ORIGINAL PAPER
Ability of the rumen bacterium Pseudobutyrivibrio ruminis strain k3 to utilize fructose, sucrose and fructose polymers
 
More details
Hide details
1
The Kielanowski Institute of Animal Physiology of Nutrition, Polish Academy of Sciences, Instytucka 3, Jabłonna, Poland
 
 
Publication date: 2018-12-20
 
 
Corresponding author
J. P. Michalski   

The Kielanowski Institute of Animal Physiology of Nutrition, Polish Academy of Sciences, Instytucka 3, Jabłonna, Poland
 
 
J. Anim. Feed Sci. 2018;27(4):327-334
 
KEYWORDS
TOPICS
ABSTRACT
The aim of the study was to evaluate in what manner rumen bacterium Pseudobutyrivibrio ruminis strain k3 uses and ferments timothy grass fructan, inulin, inulooligosaccharides, sucrose, fructose and glucose. The highest concentration of bacterial population was noted at 12 h of incubation for all cultures except from that on fructose which occurred at 24 h. The highest specific growth rates occurred on sucrose, timothy grass fructan and glucose, whereas the lowest on fructose. Protein productions on timothy grass fructan, glucose, sucrose and inulooligosaccharides were 66.4–73.5 mg/100 ml of culture, while on fructose and inulin – 59.9 and 34.5 mg/100 ml, respectively. Bacteria utilized more than 91% of initial dose of timothy grass fructan, sucrose, glucose, inulooligosaccharides and fructose, and less than 47% of inulin. Production of butyrate on timothy grass fructan, sucrose, inulooligosaccharides and glucose was higher than on fructose. In contrast lactate production on fructose and glucose was higher than on timothy grass fructan and inulooligosaccharides. The lowest production of both acids was on inulin and the highest on fructose, glucose and sucrose. It was stated that Pseudobutyrivibrio ruminis strain k3 was able to use sucrose and fructan of β-2,6-type originated from grasses but possessed limited capability of using inulin.
REFERENCES (27)
1.
Barszcz M., Taciak M., Skomiał J., 2011. A dose-response effects of tannic acid and protein on growth performance, caecal fermentation, colon morphology and β-glucuronidase activity in rats. J. Anim. Feed Sci. 20, 613–625, https://doi.org/10.22358/jafs/....
 
2.
Biggs D.R., Hancock K.R., 1998. In vitro digestion of bacterial and plant fructans and effects on ammonia accumulation in cow and sheep rumen fluids. J. Gen. Appl. Microbiol. 44, 167–171, https://doi.org/10.2323/jgam.4....
 
3.
Chesson A., Forsberg C.W., 1997. Polysaccharide degradation by rumen microorganisms. In: P.N. Hobson, C.S. Stewart (Editors). The Rumen Microbial Ecosystem. Blackie Academic & Professional. London (UK), pp. 329–381, https://doi.org/10.1007/978-94....
 
4.
Diez-Gonzalez F., Bond D.R., Jennings E., Russell J.B., 1999. Alternative schemes of butyrate production in Butyrivibrio fibrisolvens and their relationship to acetate utilization, lactate production, and phylogeny. Arch. Microbiol. 171, 324–330, https://doi.org/10.1007/s00203....
 
5.
Gill J.W., King K.W., 1958. Nutritional characteristics of a Butyrivibrio. J. Bacteriol. 75, 666–673.
 
6.
Guczyńska W., 1999. Substrate preferences of some of rumen bacteria in metabolism of sugars. PhD Thesis (in Polish). The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences. Jabłonna (Poland).
 
7.
Hall M.B., Weimer P.J., 2016. Divergent utilization patterns of grass fructan, inulin, and other nonfiber carbohydrates by ruminal microbes. J. Dairy Sci. 99, 245–257, https://doi.org/10.3168/jds.20....
 
8.
Holdeman L.V., Moore W.E.C., 1973. Anaerobe Laboratory Manual. 2nd Edition. The Virginia Polytechnic Institute and State University Anaerobe Laboratory. Blacksburg, VA (USA).
 
9.
Hopkins M.J., Cummings J.H., Macfarlane G.T., 1998 Inter-species differences in maximum specific growth rates and cell yields of bifidobacteria cultured on oligosaccharides and other simple carbohydrate sources. J. Appl. Microbiol. 85, 381–386, https://doi.org/10.1046/j.1365....
 
10.
Hungate R.E., 1969. A roll tube method for cultivation of strict anaerobes (IV) In: J.R. Norris, D.W. Ribbons (Editors). Methods in Microbiology. Vol. 3 Part B. Academic Press. Cambridge, MA (USA), pp. 117–132, https://doi.org/10.1016/S0580-....
 
11.
Kasperowicz A., Stan-Głasek K., Guczynska W., Piknová M., Pristaš P., Nigutová K., Javorský P., Michałowski T., 2010. Fructanolytic and saccharolytic enzymes of the rumen bacterium Pseudobutyrivibrio ruminis strain 3 – preliminary study. Folia Microbiol. 55, 329–331, https://doi.org/10.1007/s12223....
 
12.
Kasperowicz A., Stan-Głasek K., Taciak M., Michałowski T., 2016. The fructanolytic abilities of the rumen bacterium Butyrivibrio fibrisolvens strain 3071. J. Appl. Microbiol. 120, 29–40, https://doi.org/10.1111/jam.12....
 
13.
Kopečný J., Zorec M., Mrázek J., Kobayashi Y., Marinšek-Logar R. 2003. Butyrivibrio hungatei sp. nov. and Pseudobutyrivibrio xylanivorans sp. nov., butyrate-producing bacteria from the rumen. Int. J. Syst. Evol. Microbiol. 53, 201–209, https://doi.org/10.1099/ijs.0.....
 
14.
Koppová I., Lukáš F., Kopečný J., 2006. Effect of fatty acids on growth of conjugated-linoleic-acids-producing bacteria in rumen. Folia Microbiol. 51, 291–293, https://doi.org/10.1007/BF0293....
 
15.
Latham M.J., Legakis N.J., 1976. Cultural factors influencing the utilization or production of acetate by Butyrivibrio fibrisolvens. J. Gen. Microbiol. 94, 380–388, https://doi.org/10.1099/002212....
 
16.
Martin S.A., 1994. Nutrient transport by ruminal bacteria: a review. J. Anim. Sci. 72, 3019–3031, https://doi.org/10.2527/1994.7....
 
17.
Nelson C.J., Spollen W.G., 1987. Fructans. Physiol Plant. 71, 512–516, https://doi.org/10.1111/j.1399....
 
18.
Piknova M., Guczynska W., Miltko R., Javorsky P., Kasperowicz A., Michalowski T., Pristas P., 2008. Treponema zioleckii sp. nov., a novel fructan-utilizing species of rumen treponemes. FEMS Microbiol. Lett. 289, 166–172, https://doi.org/10.1111/j.1574....
 
19.
Reid S.J., Abratt V.R., 2005. Sucrose utilisation in bacteria: genetic organization and regulation. Appl. Microbiol. Biotechnol. 67, 312–321, https://doi.org/10.1007/s00253....
 
20.
Smith P.K., Krohn R.J., Hermanson G.T., Mallia A.K., Gartner F.H., Provenzano M.D., Fujimoto E.K., Goeke N.M., Olson B.J., Klenk D.C., 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85, https://doi.org/10.1016/0003-2....
 
21.
Southgate D.A.T., 1991. Determination of Food Carbohydrates. 2nd Edition. Elsevier Applied Science. London (UK).
 
22.
Stan-Głasek K., 2013. The ability of the rumen bacteria Pseudobutyrivibrio ruminis strain k3 to utilize sucrose and the polymers of fructose. PhD Thesis (in Polish). The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences. Jabłonna (Poland).
 
23.
Thomas G.J., 1960. Metabolism of the soluble carbohydrates of grasses in the rumen of the sheep. J. Agric. Sci. 54, 360–372, https://doi.org/10.1017/S00218....
 
24.
Van den Ende W., Mintiens A., Speleers H., Onuoha A.A., van Laere A., 1996. The metabolism of fructans in roots of Cichorium intybus during growth, storage and forcing. New Phytol. 132, 555–563, https://doi.org/10.1111/j.1469....
 
25.
Van Gylswyk N.O., Hippe H., Rainey F.A., 1996. Pseudobutyrivibrio ruminis gen. nov., sp. nov., a butyrate-producing bacterium from the rumen that closely resembles Butyrivibrio fibrisolvens in phenotype. Int. J. Syst. Evol. Microbiol. 46, 559–563, https://doi.org/10.1099/002077....
 
26.
Van Soest P.J., 1982. Carbohydrates. In: Nutritional Ecology of the Ruminant. O & B Books, Inc. Corvallis, OR (USA), pp. 95–117.
 
27.
Ziołecki A., Guczyńska W., Wojciechowicz M., 1992. Some rumen bacteria degrading fructan. Lett. Appl. Microbiol. 15, 244–247, https://doi.org/10.1111/j.1472....
 
ISSN:1230-1388
Journals System - logo
Scroll to top