REVIEW PAPER
Anaerobic rumen fungi and fungal direct-fed microbials
in ruminant feeding
More details
Hide details
1
Wrocław University of Environmental and Life Sciences, Faculty of Biology and Animal Science,
Department of Animal Nutrition and Feed Science, 50-375 Wrocław, Poland
2
Wrocław University of Environmental and Life Sciences, Faculty of Biology and Animal Science, Department of Environmental
Hygiene and Animal Welfare, 50-375 Wrocław, Poland
Publication date: 2022-10-07
Corresponding author
M. Wilk
Wrocław University of Environmental and Life Sciences,
Department of Animal Nutrition and Feed Science
J. Anim. Feed Sci. 2023;32(1):3-16
KEYWORDS
TOPICS
ABSTRACT
The article discusses the importance and role of fungal directfed
microbials (DFM) and anaerobic rumen fungi (ARF) in ruminants and their
metabolic pathways of plant fibre decomposition, as well as rumen fermentation
processes. ARF classification, enzymatic activity, impact on rumen metabolism,
as well as fungal DFM and application of their metabolites in ruminant feeding
are presented. The research area concerning ARF in ruminant feeding is gaining
interest as the subject is still poorly elucidated. The latest research in the field
of ruminant physiology and nutrition has pointed to a significant impact of ARF
and fungal DFM on nutrient degradability, fermentation profile in the rumen,
and animal performance. Although, the proportion of fungi in the total rumen
microorganisms is low (approximately 8% of rumen biomass), they play a crucial
role in generating a series of enzymes utilising difficult-to-debase compounds,
such as cellulose, hemicelluloses and xylose. Although enzymes secreted by
ARF are not able to degrade lignin, they can solubilise lignocellulosic complexes
and expand the surface area for enzymatic activity. This leads to a better
utilisation of fibrous feeds, increased nutrient digestibility, and enhanced rumen
fermentation. A comprehensive description and discussion of these issues in the
review provides an in-depth look at the role of ARF and the potential use of ARF
as DFM in the ruminant nutrition in a-broad perspective.
CONFLICT OF INTEREST
The Authors declare that there is no conflict of
interest.
REFERENCES (126)
1.
Agarwal N., Kamra D.N., Chaudhary L.C., Agarwal I., Sahoo A., Pathak N.N., 2002. Microbial status and rumen enzyme profile of crossbred calves fed on different microbial feed additives. Lett. Appl. Microbiol. 34, 329–336,
https://doi.org/10.1046/j.1472...
2.
Agüero M.G., Ganal-Vonarburg S.C., Fuhrer T. et al., 2016. The maternal microbiota drives early postnatal innate immune development. Science 351, 1296–1302,
http://doi.org/10.1126/science...
3.
Altop A., Güngör E., Erener G., 2018. Aspergillus niger may improve nutritional quality of grape seed and its usability in animal nutrition through solid-state fermentation. Int. Adv. Res. Eng. J. 02, 273–277
4.
Arowolo M.A., He J., 2018. Use of probiotics and botanical extracts to improve ruminant production in the tropics: a review. Anim. Nutr. 4, 241–249,
https://doi.org/10.1016/j.anin...
5.
Aschenbach J.R., Penner G.B., Stumpff F., Gäbel G., 2011. Ruminant nutrition symposium: Role of fermentation acid absorption in the regulation of ruminal pH. J. Anim. Sci. 89, 1092–1107,
http://doi.org/10.2527/jas.201...
6.
Atanasova-Pancevska N., Kungulovski D., 2008. Comparison of morphological and enzyme characteristics of anaerobic fungi isolated from Cervus dama. Open Life Sci. 3, 69–74,
https://doi.org/10.2478/s11535...
7.
Beauchemin K.A., Colombatto D., Morgavi D.P., Yang W.Z., 2003. Use of exogenous fibrolytic enzymes to improve feed utilization by ruminants. J. Anim. Sci. 81, E37–E47,
https://doi.org/10.2527/2003.8...
8.
Beg Q., Kapoor M., Mahajan L., Hoondal G., 2001. Microbial xylanases and their industrial applications: a review. Appl. Microbiol. Biotechnol. 56, 326–338,
https://doi.org/10.1007/s00253...
9.
Beharka A.A., Nagaraja T.G., Morrill J.L., 1991. Performance and ruminal function development of young calves fed diets with Aspergillus oryzae fermentation extract. J. Dairy Sci. 74, 4326–4336,
https://doi.org/10.3168/jds.S0...
10.
Bernalier A., Fonty G., Bonnemoy F., Gouet P., 1992. Degradation and fermentation of cellulose by the rumen anaerobic fungi in axenic cultures or in association with cellulolytic bacteria. Curr. Microbiol. 25, 143–148,
https://doi.org/10.1007/BF0157...
12.
Borneman W.S., Ljungdahl L.G., Hartley R.D., Akin D.E., 1992. Purification and partial characterization of two feruloyl esterases from the anaerobic fungus Neocallimastix strain MC-2. Appl. Environ. Microbiol. 58, 3762–3766,
https://doi.org/10.1128/aem.58...
13.
Breton A., Bernalier A., Dusser M., Fonty G., Gaillard-Martinie B., Guillot J., 1990. Anaeromyces mucronatus nov. gen., nov. sp. A new strictly anaerobic rumen fungus with polycentric thallus. FEMS Microbiol. Lett. 70, 177–182,
https://doi.org/10.1111/j.1574...
14.
Broadway P.R., Carroll J.A., Sanchez N.C., 2015. Live yeast and yeast cell wall supplements enhance immune function and performance in food-producing livestock: a review. Microorganisms 3, 417–427,
https://doi.org/10.3390/microo...
15.
Burdick Sanchez N.C., Young T.R., Carroll J.A., Corley J.R., Rathmann R.J., Johnson B.J., 2014. Yeast cell wall supplementation alters the metabolic responses of crossbred heifers to an endotoxin challenge. Innate Immun. 20, 104–112,
https://doi.org/10.1177/175342...
16.
Cakiroglu D., Meral Y., Pekmezci D., Akdag F., 2010. Effects of live yeast culture (Saccharomyces cerevisiae) on milk production and blood lipid levels of Jersey cows in early lactation. J. Anim. Vet. Adv. 9, 1370–1374,
https://doi.org/10.3923/javaa....
17.
Castillo-González A.R., Burrola-Barraza M.E., Domínguez-Viveros J., Chávez-Martínez A., 2014. Rumen microorganisms and fermentation. Arch. Med. Vet. 46, 349–361,
https://doi.org/10.4067/S0301-...
19.
Cheng Y.F., Edwards J.E., Allison G.G., Zhu W-Y., Theodorou M.K., 2009. Diversity and activity of enriched ruminal cultures of anaerobic fungi and methanogens grown together on lignocellulose in consecutive batch culture. Bioresour. Technol. 100, 4821–4828,
https://doi.org/10.1016/j.bior...
20.
Cömert M., Şayan Y., Özelçam H., Baykal G.Y., 2015. Effects of Saccharomyces cerevisiae supplementation and anhydrous ammonia treatment of wheat straw on in-situ degradability and, rumen fermentation and growth performance of yearling lambs. Asian-Australas. J. Anim. Sci. 28, 639–646,
https://doi.org/10.5713/ajas.1...
21.
Comlekcioglu U., Ozkose E., Tutus A., Akyol I., Ekinci M.S., 2010. Cloning and characterization of cellulase and xylanase coding genes from anaerobic fungus Neocallimastix sp. GMLF1. Int. J. Agric. Biol. 12, 691–696
22.
Dagar S.S., Kumar S., Mudgil P., Singh R., Puniya A.K., 2011. D1/D2 domain of large-subunit ribosomal DNA for differentiation of Orpinomyces spp. Appl. Environ. Microbiol. 77, 6722–6725,
https://doi.org/10.1128/AEM.05...
23.
Damásio A.R., Braga C.M.P., Brenelli L.B., et al., 2013. Biomass-to-bio-products application of feruloyl esterase from Aspergillus clavatus. Appl. Microbiol. Biotechnol. 97, 6759–6767,
https://doi.org/10.1007/s00253...
24.
De Ondarza M.B., Sniffen C.J, Graham H., Wilcock P., 2010. Case study: effect of supplemental live yeast on yield of milk and milk components in high-producing multiparous Holstein cows. Prof. Anim. Sci. 26, 443–449,
https://doi.org/10.15232/S1080...
25.
Denman S.E., Nicholson M.J., Brookman J.L., Theodorou M.K., McSweeney C.S., 2008. Detection and monitoring of anaerobic rumen fungi using an ARISA method. Lett. Appl. Microbiol. 47, 492–499,
https://doi.org/10.1111/j.1472...
26.
Desnoyers M., Giger-Reverdin S., Bertin G., Duvaux-Ponter C., Sauvant D., 2009. Meta-analysis of the influence of Saccharomyces cerevisiae supplementation on ruminal parameters and milk production of ruminants. J. Dairy Sci. 92, 1620–1632,
https://doi.org/10.3168/jds.20...
27.
Dey A., Sehgal J.P., Puniya A.K., Singh K., 2004. Influence of an anaerobic fungal culture (Orpinomyces sp.) administration on growth rate, ruminal fermentation and nutrient digestion in calves. Asian-Australas. J. Anim. Sci. 17, 820–824,
https://doi.org/10.5713/ajas.2...
28.
Dijkstra J., van Gastelen S., Dieho K., Nichols K., Bannink A., 2020. Rumen sensors: data and interpretation for key rumen metabolic processes. Animal 14, 176–186,
https://doi.org/10.1017/S17517...
29.
Duarte I., Huynen M.A., 2019. Contribution of lateral gene transfer to the evolution of the eukaryotic fungus Piromyces sp. E2: massive bacterial transfer of genes involved in carbohydrate metabolism. bioRxiv 514042,
http://dx.doi.org/10.1101/5140...
30.
Edwards J.E., Forster R.J., Callaghan T.M., et al., 2017. PCR and omics based techniques to study the diversity, ecology and biology of anaerobic fungi: insights, challenges and opportunities. Front. Microbiol. 8, 1657,
https://doi.org/10.3389/fmicb....
31.
Elekwachi C.O., Wang Z., Wu X., Rabee A., Forster R.J., 2017. Total rRNA-Seq analysis gives insight into bacterial, fungal, protozoal and archaeal communities in the rumen using an optimized RNA isolation method. Front. Microbiol. 8, 1814,
https://doi.org/10.3389/fmicb....
32.
Elghandour M.M., Salem A.Z., Castañeda J.S.M., Camacho L.M., Kholif E.A., Vázquez Chagoyán J.C.V., 2015. Direct-fed microbes: a tool for improving the utilization of low quality roughages in ruminants. J. Integr. Agric. 14, 526–533,
https://doi.org/10.1016/S2095-...
33.
Elghandour M.M.Y., Vázquez Chagoyán J.C., Salem A.Z.M., Kholif A.E., Castañeda J.S.M., Camacho L.M., Buendía G., 2014. In vitro fermentative capacity of equine fecal inocula of 9 fibrous forages in the presence of different doses of Saccharomyces cerevisiae. J. Equine Vet. Sci. 34, 619–625,
https://doi.org/10.1016/j.jevs...
34.
Elghandour M.M.Y., Vázquez J.C., Salem A.Z.M., Kholif A.E., Cipriano M.M., Camacho L.M., Márquez O., 2017. In vitro gas and methane production of two mixed rations influenced by three different cultures of Saccharomyces cerevisiae. J. Appl. Anim. Res. 45, 389–395,
https://doi.org/10.1080/097121...
35.
Erasmus L.J., Botha P.M., Kistner A., 1992. Effect of yeast culture supplement on production, rumen fermentation, and duodenal nitrogen flow in dairy cows. J. Dairy Sci. 75, 3056–3065,
https://doi.org/10.3168/jds.S0...
36.
Faniyi T.O., Adegbeye M.J., Elghandour M.M.M.Y., Pilego A.B., Salem A.Z.M., Olaniyi T.A., Adediran O., Adewumi M.K., 2019. Role of diverse fermentative factors towards microbial community shift in ruminants. J. Appl. Microbiol. 127, 2–11,
https://doi.org/10.1111/jam.14...
37.
Ferdeș M., Dincă M.N., Moiceanu G., Zăbavă B.Ș., Paraschiv G., 2020. Microorganisms and enzymes used in the biological pretreatment of the substrate to enhance biogas production: a review. Sustainability 12, 7205,
https://doi.org/10.3390/su1217...
38.
Firkins J.L., Yu Z., Morrison M., 2007. Ruminal nitrogen metabolism: perspectives for integration of microbiology and nutrition for dairy. J. Dairy Sci. 90, E1–E16,
https://doi.org/10.3168/jds.20...
39.
Flad V. et al., 2020. The biotechnological potential of anaerobic gut fungi. In: J.P. Benz, K. Schipper (Editors) Genetics and Biotechnology. The Mycota. Springer International Publishing. Cham, Switzerland, pp. 413–437,
https://doi.org/10.1007/978-3-...
40.
Gainvors A., Frezier V., Lemaresquier H., Lequart C., Aigle M., Belarbi A., 1994. Detection of polygalacturonase, pectin-lyase and pectin-esterase activities in a Saccharomyces cerevisiae strain. Yeast 10, 1311–1319,
https://doi.org/10.1002/yea.32...
41.
Galvão K.N., Santos J.E.P., Coscioni A., Villaseñor M., Sischo W.M., Berge A.C.B., 2005. Effect of feeding live yeast products to calves with failure of passive transfer on performance and patterns of antibiotic resistance in fecal Escherichia coli. Reprod. Nutr. Dev. 45, 427–440,
https://doi.org/10.1051/rnd:20...
42.
Gerbi C., Bata J., Breton A., Prensier G., 1996. Glycoside and polysaccharide hydrolase activity of the rumen anaerobic fungus Caecomyces communis (Sphaeromonas communis SENSU ORPIN) at early and final stages of the developmental cycle. Curr. Microbiol. 32, 256–259,
https://doi.org/10.1007/s00284...
44.
Gordon G., Phillips M., 1993. Removal of anaerobic fungi from the rumen of sheep by chemical treatment and the effect on feed consumption and in vivo fibre digestion. Lett. Appl. Microbiol. 17, 220–223,
https://doi.org/10.1111/j.1472...
45.
Gruninger R.J., Nguyen T., Reid I.D., Yanke J.L., Wang P., Abbott D.W., Tsang A., McAllister T., 2018. Application of transcriptomics to compare the carbohydrate active enzymes that are expressed by diverse genera of anaerobic fungi to degrade plant cell wall carbohydrates. Front. Microbiol. 9, 1581,
https://doi.org/10.3389/fmicb....
46.
Gruninger R.J., Puniya A.K., Callaghan T.M., et al., 2014. Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol. Ecol. 90, 1–17,
https://doi.org/10.1111/1574-6...
47.
Haitjema C.H., Solomon K.V., Henske J.K., Theodorou M.K., O'Malley M.A., 2014. Anaerobic gut fungi: advances in isolation, culture, and cellulolytic enzyme discovery for biofuel production. Biotechnol. Bioeng. 111, 1471–1482,
https://doi.org/10.1002/bit.25...
48.
Hanafy R.A., Elshahed M.S., Liggenstoffer A.S., Griffith G.W., Youssef N.H., 2017. Pecoramyces ruminantium, gen. nov., sp. nov., an anaerobic gut fungus from the feces of cattle and sheep. Mycologia. 109, 231–243,
https://doi.org/10.1080/002755...
50.
Hassan A.A., Salem A.Z.M., Kholif A.E., Samir M., Yacout M.H., Hafsa S.A., Mendoza G.D., Elghandour M.M.Y., Ayala M., López S., 2016. Performance of crossbred dairy Friesian calves fed two levels of Saccharomyces cerevisiae: intake, digestion, ruminal fermentation, blood parameters and fecal pathogenic bacteria. J. Agric. Sci. 154, 1488–1498,
https://doi.org/10.1017/S00218...
51.
Hess M., Paul S.S., Puniya A.K., van der Giezen M., Shaw C., Edwards J.E., Fliegerová K., 2020. Anaerobic fungi: past, present, and future. Front. Microbiol. 11, 584893,
https://doi.org/10.3389/fmicb....
52.
Higginbotham G.E., Santos J.E., Juchem S.O., DePeters E.J. 2004. Effect of feeding Aspergillus oryzae extract on milk production and rumen parameters. Livest. Prod. Sci. 86, 55–59,
https://doi.org/10.1016/S0301-...
53.
Ho Y.W., Wong M.V.L., Abdullan N., Kudo H. Jalaludin S., 1996. Fermentation activities of some new species of anaerobic rumen fungi from Malaysia. J. Gen. Appl. Microbiol. 42, 51–59,
https://doi.org/10.2323/jgam.4...
54.
Hristov A.N., Oh J., Giallongo F. et al., 2015. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proc. Natl. Acad. Sci. 112, 10663–10668,
https://doi.org/10.1073/pnas.1...
55.
Jasani H., Umretiya N., Dharajiya D., Kapuria M., Shah S., Patel J., 2016. Isolation, optimization and production of cellulase by Aspergillus niger from agricultural waste. J. Pure. Appl. Microbiol. 10, 1159–1167
56.
Jenkins T.C., Wallace R.J., Moate P.J., Mosley E.E., 2008. Board-invited review: recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J. Anim. Sci. 86, 397–412,
https://doi.org/10.2527/jas.20...
57.
Jin W., Cheng Y.F., Mao S.Y., Zhu W.Y., 2011. Isolation of natural cultures of anaerobic fungi and indigenously associated methanogens from herbivores and their bioconversion of lignocellulosic materials to methane. Bioresour. Technol. 102, 7925–7931,
https://doi.org/10.1016/j.bior...
58.
Joshi A., Lanjekar V.B., Dhakephalkar P.K., Callaghan T.M., Griffith G.W., Dagar S.S., 2018. Liebetanzomyces polymorphus gen. et sp. nov., a new anaerobic fungus (Neocallimastigomycota) isolated from the rumen of a goat. MycoKeys 40, 89–110,
https://doi.org/10.3897/mycoke...
59.
Kamra D.N., Singh B., 2017. Anaerobic gut fungi. In: T. Satyanarayana, S.K. Deshmukh, B.N. Johri (Editors). Developments in fungal biology and applied mycology. Springer Singapore . pp. 125–134,
https://doi.org/10.1007/978-98...
60.
Kholif A.E., Khattab H.M., El-Shewy A.A., Salem A.Z.M., Kholif A.M., El-Sayed M.M., Gado H.M., Mariezcurrena M.D., 2014. Nutrient digestibility, ruminal fermentation activities, serum parameters and milk production and composition of lactating goats fed diets containing rice straw treated with Pleurotus ostreatus. Asian-Australas. J. Anim. Sci. 27, 357,
https://doi.org/10.5713/ajas.2...
61.
Kong F., Lu N., Liu Y., Zhang S., Jiang H., Wang H., Wang W., Li S., 2021. Aspergillus oryzae and Aspergillus niger co-cultivation extract affects in vitro degradation, fermentation characteristics, and bacterial composition in a diet-specific manner. Animals 11, 1248,
https://doi.org/10.3390/ani110...
63.
Krause K.M., Oetzel G.R., 2006. Understanding and preventing subacute ruminal acidosis in dairy herds: A review. Anim. Feed. Sci. Technol. 126, 215–236,
https://doi.org/10.1016/j.anif...
64.
Kumar U., Sareen V.K., Singh S., 1997. Effect of yeast culture supplement on ruminal microbial populations and metabolism in buffalo calves fed a high roughage diet. J. Sci. Food. Agric. 73, 231–236,
https://doi.org/10.1002/(SICI)...<231::AID-JSFA710>3.0.CO;2-D
65.
Lange L., Pilgaard B., Herbst F.A., Busk P.K., Gleason F., Pedersen A.G., 2019. Origin of fungal biomass degrading enzymes: evolution, diversity and function of enzymes of early lineage fungi. Fungal Biol. Rev. 33, 82–97,
https://doi.org/10.1016/j.fbr....
66.
Lee S.M., Guan L.L., Eun J.S., Kim C.H., Lee S.J., Kim E.T., Lee S.S., 2015. The effect of anaerobic fungal inoculation on the fermentation characteristics of rice straw silages. J. Appl. Microbiol. 118, 565–573,
https://doi.org/10.1111/jam.12...
67.
Leng J., Liu X., Zhang C., Zhu R., Mao H., 2018. Gene cloning and expression of fungal lignocellulolytic enzymes from the rumen of gayal (Bos frontalis). J. Gen. Appl. Microbiol. 64, 9–14,
https://doi.org/10.2323/jgam.2...
68.
Lesmeister K.E., Heinrichs A.J., Gabler M.T., 2004. Effects of supplemental yeast (Saccharomyces cerevisiae) culture on rumen development, growth characteristics, and blood parameters in neonatal dairy calves. J. Dairy. Sci. 87, 1832–1839,
https://doi.org/10.3168/jds.S0...
69.
Li Y., Meng Z., Xu Y., Shi Q., Ma Y., Aung M., Cheng Y., Zhu W., 2021. Interactions between anaerobic fungi and methanogens in the rumen and their biotechnological potential in biogas production from lignocellulosic materials. Microorganisms 9, 190,
https://doi.org/10.3390/microo...
70.
Liu J.R., Duan C.H., Zhao X., Tzen J.T., Cheng K.J., Pai C.K., 2008. Cloning of a rumen fungal xylanase gene and purification of the recombinant enzyme via artificial oil bodies. Appl. Microbiol. Biotechnol. 79, 225–233,
https://doi.org/10.1007/s00253...
71.
Lopes F.C., e Silva L.A.D., Tichota D.M., Daroit D.J., Velho R.V., Pereira J.Q., Corrêa A.P.F., Brandelli A., 2011. Production of proteolytic enzymes by a keratin-degrading Aspergillus niger. Enzyme. Res. 2011,
https://doi.org/10.4061/2011/4...
72.
Mäkelä M.R., DiFalco M., McDonnell E., Nguyen T.T.M., Wiebenga A., Hildén K., Peng M., Grigoriev I.V., Tsang A., de Vries R.P., 2018. Genomic and exoproteomic diversity in plant biomass degradation approaches among Aspergilli. Stud. Mycol. 91, 79–99,
https://doi.org/10.1016/j.simy...
73.
Malekkhahi M., Tahmasbi A.M., Naserian A.A., Danesh-Mesgaran M., Kleen J.L., AlZahal O., Ghaffari M.H., 2016. Effects of supplementation of active dried yeast and malate during subacute ruminal acidosis on rumen fermentation, microbial population, selected blood metabolites, and milk production in dairy cows. Anim. Feed. Sci. Technol. 213, 29–43,
https://doi.org/10.1016/j.anif...
74.
Mao H.L., Mao H.L., Wang J.K., Liu J.X., Yoon I., 2013. Effects of Saccharomyces cerevisiae fermentation product on in vitro fermentation and microbial communities of low-quality forages and mixed diets. J. Anim. Sci. 91, 3291–3298,
https://doi.org/10.2527/jas.20...
75.
Marden J.P., Julien C., Monteils V., Auclair E., Moncoulon R., Bayourthe C., 2008. How does live yeast differ from sodium bicarbonate to stabilize ruminal pH in high-yielding dairy cows? Int. J. Dairy Sci. 91, 3528–3535,
https://doi.org/10.3168/jds.20...
76.
Martı́n C., Galbe M., Wahlbom C.F., Hahn-Hägerdal B., Jönsson L.J., 2002. Ethanol production from enzymatic hydrolysates of sugarcane bagasse using recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme Microb. Technol. 31, 274–282,
https://doi.org/10.1016/S0141-...
77.
Marvin-Sikkema F.D., Pedro Gomes T.M., Grivet J.P., Gottschal J.C., Prins R.A., 1993. Characterization of hydrogenosomes and their role in glucose metabolism of Neocallimastix sp. L2. Arch. Microbiol. 160, 388–396,
https://doi.org/10.1007/BF0025...
78.
McAllister T.A., Beauchemin K.A., Alazzeh A.Y., Baah J., Teather R.M., Stanford K., 2011. The use of direct fed microbials to mitigate pathogens and enhance production in cattle. Can. J. Anim. Sci. 91, 193–211,
https://doi.org/10.4141/cjas10...
79.
McSweeney C., Mackie R., 2012. Commission on genetic resources for food and agriculture. Micro-organisms ruminant digestion: state knowledge trends future prospects. Backgr. Study Pap. FAO 61, 1–62,
http://www.fao.org/docrep/016/...
80.
Miller-Webster T., Hoover W.H., Holt M., Nocek J.E., 2002. Influence of yeast culture on ruminal microbial metabolism in continuous culture. J. Dairy Sci. 85, 2009–2014,
https://doi.org/10.3168/jds.S0...
82.
Moreno M.R., 2012. Effect of yeast, protected minerals and bismuth subsalicylate on in vitro fermentation by rumen microbes. University of Minnesota. Minneapolis, MN (USA)
83.
Morgavi D.P., Beauchemin K.A., Nsereko V.L., Rode L.M., Iwaasa A.D., Yang W.Z., McAllister T.A., Wang Y., 2000. Synergy between ruminal fibrolytic enzymes and enzymes from Trichoderma longibrachiatum. J. Dairy Sci. 83, 1310–1321,
https://doi.org/10.3168/jds.S0...
86.
Nagpal R., Bhardwaj N.K., Mahajan R., 2020. Synergistic approach using ultrafiltered xylano-pectinolytic enzymes for reducing bleaching chemical dose in manufacturing rice straw paper. Environ. Sci. Pollut. Res. 27, 44637–44646,
https://doi.org/10.1007/s11356...
87.
Nam I.S., Garnsworthy P.C., 2007. Biohydrogenation of linoleic acid by rumen fungi compared with rumen bacteria. J. Appl. Microbiol. 103, 551–556,
https://doi.org/10.1111/j.1365...
88.
Novotná Z., Fliegerová K., Šimůnek J., 2008. Characterization of chitinases of polycentric anaerobic rumen fungi. Folia Microbiol. 53, 241–245,
https://doi.org/10.1007/s12223...
89.
Nsereko V.L., Beauchemin K.A., Morgavi D.P., Rode L.M., Furtado A.F., McAllister T.A., Iwaasa A.D., Yang W.Z., Wang Y., 2002. Effect of a fibrolytic enzyme preparation from Trichoderma longibrachiatum on the rumen microbial population of dairy cows. Can. J. Microbiol. 48, 14–20,
https://doi.org/10.1139/w01-13...
90.
Obispo N.E., Dehority B.A., 1992. A most probable number method for enumeration of rumen fungi with studies on factors affecting their concentration in the rumen. J. Microbiol. Methods 16, 259–270,
https://doi.org/10.1016/0167-7...
91.
Ooi C.K., Rasit N., Abdullah W.R.W., 2021. Optimization of protease from Aspergillus niger under solid-state fermentation utilizing shrimp shell substrate. Biointerface Res. Appl. Chem. 11, 14809–14824,
https://doi.org/10.33263/briac...
93.
Paul S.S., Kamra D.N., Sastry V.R., 2010. Fermentative characteristics and fibrolytic activities of anaerobic gut fungi isolated from wild and domestic ruminants. Arch. Anim. Nutr. 64, 279–292, https:doi.org/10.1080/17450391003625037
94.
Paul S.S., Kamra D.N., Sastry V.R., Sahu N.P., 2006. Effect of adding an anaerobic fungal culture isolated from a wild blue bull (Boselophus tragocamelus) to rumen fluid from buffaloes on in vitro fibrolytic enzyme activity, fermentation and degradation of tannins and tannin-containing Kachnar tree (Bauhinia variegata) leaves and wheat straw. J. Sci. Food. Agric. 86, 258–270,
https://doi.org/10.1002/jsfa.2...
95.
Pinloche E., McEwan N., Marden J.P., Bayourthe C., Auclair E., Newbold C.J., 2013. The effects of a probiotic yeast on the bacterial diversity and population structure in the rumen of cattle. PloS ONE 8, e67824,
https://doi.org/10.1371/journa...
96.
Plata F.P., Mendoza G.D., Bárcena-Gama J.R., Gonzalez M., 1994. Effect of a yeast culture (Saccharomyces cerevisiae) on neutral detergent fiber digestion in steers fed oat straw based diets. Anim. Feed Sci. Technol. 49, 203–210,
https://doi.org/10.1016/0377-8...
97.
Puniya A.K., Salem A.Z., Kumar S., Dagar S.S., Griffith G.W., Puniya M., Ravella S.R., Kumar N.R., Dhewa T., Kumar R., 2015. Role of live microbial feed supplements with reference to anaerobic fungi in ruminant productivity. A review. J. Integr. Agric. 14, 550–560,
http://doi.org/10.1016/S2095-3...
98.
Quartinello F., Kremser K., Schoen H. et al., 2021. Together is better: the rumen microbial community as biological toolbox for degradation of synthetic polyesters. Front. Bioeng. Biotechnol. 9, 684459,
https://doi.org/10.3389/fbioe....
99.
Ren H., Sun W., Yan Z., Zhang Y., Wang Z., Song B., Zheng Y., Li J., 2021. Bioaugmentation of sweet sorghum ensiling with rumen fluid: fermentation characteristics, chemical composition, microbial community, and enzymatic digestibility of silages. J. Clean. Prod. 294, 126308,
https://doi.org/10.1016/j.jcle...
100.
Sadh P.K., Chawla P., Bhandari L., Kaushik R., Duhan J.S., 2017. In vitro assessment of bio-augmented minerals from peanut oil cakes fermented by Aspergillus oryzae through Caco-2 cells. J. Food. Sci. Technol. 54, 3640–3649,
https://doi.org/10.1007/s13197...
101.
Sallam S.M., Abdelmalek M.L., Kholif A.E., Zahran S.M., Ahmed M.H., Zeweil H.S., Attia M.F.A., Matloup O.H., Olafadehan O.A., 2020. The effect of Saccharomyces cerevisiae live cells and Aspergillus oryzaefermentation extract on the lactational performance of dairy cows. Anim. Biotechnol. 31, 491–497,
https://doi.org/10.1080/104953...
102.
Sanchez V., Rebolledo O., Picaso R.M., Cardenas E., Cordova J., Gonzalez O., Samuels G.J., 2007. In vitro antagonism of Thielaviopsis paradoxa by Trichoderma longibrachiatum. Mycopathologia 163, 49–58,
https://doi.org/10.1007/s11046...
103.
Saxena S., Sehgal J., Puniya A., Singh K., 2010. Effect of administration of rumen fungi on production performance of lactating buffaloes. Benef. Microbes 1, 183–188,
https://doi.org/10.3920/BM2009...
104.
Saye L.M., Navaratna T.A., Chong J.P., O’Malley M.A., Theodorou M.K., Reilly M., 2021. The Anaerobic fungi: challenges and opportunities for industrial lignocellulosic biofuel production. Microorganisms 9, 694,
https://doi.org/10.3390/microo...
105.
Sayers E.W., Beck J., Bolton E.E., et al., 2020. Database resources of the national center for biotechnology information. Nucleic Acids Res. 49, D10–D17,
https://doi.org/10.1093/nar/gk...
106.
Sirohi S.K., Choudhury P.K., Dagar S.S., Puniya A.K., Singh D., 2013. Isolation, characterization and fibre degradation potential of anaerobic rumen fungi from cattle. Ann. Microbiol. 63, 1187–1194,
https://doi.org/10.1007/s13213...
107.
Sousa D.O., Oliveira C.A., Velasquez A.V., Souza J.M., Chevaux E., Mari L.J., Silva L.F.P., 2018. Live yeast supplementation improves rumen fibre degradation in cattle grazing tropical pastures throughout the year. Anim. Feed Sci. Technol. 236, 149–158,
https://doi.org/10.1016/j.anif...
108.
Sun H., Wu Y.M., Wang Y.M., Liu J. X., Myung K.H., 2014. Effects of Aspergillus oryzae culture and 2-hydroxy-4-(methylthio)-butanoic acid on in vitro rumen fermentation and microbial populations between different roughage sources. Asian-Australas. J. Anim. Sci. 27, 1285,
https://doi.org/10.5713/ajas.2...
109.
Sylvester J.T., Karnati S.K., Yu Z., Morrison M., Firkins J.L., 2004. Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. J. Nutr. 134, 3378–3384,
https://doi.org/10.1093/jn/134...
110.
Teunissen M.J., de Kort G.V.M., Op Den Camp H.J., Vogels G.D., 1993. Production of cellulolytic and xylanolytic enzymes during growth of anaerobic fungi from ruminant and nonruminant herbivores on different substrates. Appl. Biochem. Biotechnol. 39, 177–189,
https://doi.org/10.1007/BF0291...
111.
Thareja A., Puniya A.K., Goel G., Nagpal R., Sehgal J.P., Singh P.K., Singh K., 2006. In vitro degradation of wheat straw by anaerobic fungi from small ruminants. Arch. Anim. Nutr. 60, 412–417,
https://doi.org/10.1080/174503...
112.
Trinci A.P.J., Davies D.R., Gull K., Lawrence M.I., Nielsen B.B., Rickers A., Theodorou M.K., 1994. Anaerobic fungi in herbivorous animals. Mycol. Res. 98, 129–152,
https://doi.org/10.1016/S0953-...
113.
Tripathi V.K., Sehgal J.P., Puniya A.K., Singh K., 2007. Hydrolytic activities of anaerobic fungi from wild blue bull (Boselaphus tragocamelus). Anaerobe 13, 36–39,
https://doi.org/10.1016/j.anae...
114.
Vallejo-Hernández L.H., Elghandour M.M., Greiner R., Anele U.Y., Rivas-Cáceres R.R., Barros-Rodríguez M., Salem A.Z.M., 2018. Environmental impact of yeast and exogenous xylanase on mitigating carbon dioxide and enteric methane production in ruminants. J. Clean. Prod. 189, 40-46,
https://doi.org/10.1016/j.jcle...
115.
Várnai A., Mäkelä M.R., Djajadi D.T., Rahikainen J., Hatakka A., Viikari L., 2014. Chapter Four – Carbohydrate-binding modules of fungal cellulases: occurrence in nature, function, and relevance in industrial biomass conversion. Adv. Appl. Microbiol. 88, 103–165,
https://doi.org/10.1016/B978-0...
116.
Vinzelj J., Joshi A., Insam H., Podmirseg S.M., 2020. Employing anaerobic fungi in biogas production: challenges & opportunities. Bioresour. Technol. 300, 122687,
https://doi.org/10.1016/j.bior...
117.
Wahrmund J.L., Ronchesel J.R., Krehbiel C.R., Goad C.L., Trost S.M., Richards C.J., 2012. Ruminal acidosis challenge impact on ruminal temperature in feedlot cattle. J. Anim. Sci. 90, 2794–2801,
https://doi.org/10.2527/jas.20...
118.
Waldrip H.M., Martin S.A., 1993. Effects of an Aspergillus oryzae fermentation extract and other factors on lactate utilization by the ruminal bacterium Megasphaera elsdenii. J. Anim. Sci. 71, 2770–2776,
https://doi.org/10.2527/1993.7...
119.
Wallace R.J., Wallace S.J.A., McKain N., Nsereko V.L., Hartnell G.F., 2001. Influence of supplementary fibrolytic enzymes on the fermentation of corn and grass silages by mixed ruminal microorganisms in vitro. J. Anim. Sci. 79, 1905–1916,
https://doi.org/10.2527/2001.7...
120.
Wang T-Y., Chen H-L., Lu M-Y.J., et al., 2011. Functional characterization of cellulases identified from the cow rumen fungus Neocallimastix patriciarum W5 by transcriptomic and secretomic analyses. Biotechnol. Biofuels 4, 24, 1–16,
https://doi.org/10.1186/1754-6...
121.
Welty C.M., Wenner B.A., Wagner B.K., Roman-Garcia Y., Plank J.E., Meller R.A., Gehman A.M., Firkins J.L., 2019. Rumen microbial responses to supplemental nitrate. II. Potential interactions with live yeast culture on the prokaryotic community and methanogenesis in continuous culture. J. Dairy Sci. 102, 2217–2231,
https://doi.org/10.3168/jds.20...
122.
Wood T.M., Wilson C.A., 1995. Studies on the capacity of the cellulase of the anaerobic rumen fungus Piromonas communis P to degrade hydrogen bond-ordered cellulose. Appl. Microbiol. Biotechnol. 43, 572–578,
https://doi.org/10.1007/BF0021...
123.
Wubah D.A., Kim D.S.H., 1996. Chemoattraction of anaerobic rumen fungi zoospores to selected phenolic acids. Microbiol. Res. 151, 257–262,
https://doi.org/10.1016/s0944-...
124.
Yang C., Rooke J.A., Cabeza I., Wallace R.J., 2016. Nitrate and inhibition of ruminal methanogenesis: microbial ecology, obstacles, and opportunities for lowering methane emissions from ruminant livestock. Front. Microbiol. 7, 132,
https://doi.org/10.3389/fmicb....
125.
Yue Z.-B., Yu H.-Q., Harada H., Li Y-Y., 2007. Optimization of anaerobic acidogenesis of an aquatic plant, Canna indica L., by rumen cultures. Water Res. 41, 2361–2370,
http://doi.org/10.1016/j.watre...
126.
Zhu W., Wei Z., Xu N., Yang F., Yoon I., Chung Y., Liu J., Wang J., 2017. Effects of Saccharomyces cerevisiae fermentation products on performance and rumen fermentation and microbiota in dairy cows fed a diet containing low quality forage. J. Anim. Sci. Biotechnol. 8, 1–9,
http://doi.org/10.1186/s40104-...
CITATIONS (2):
1.
Analysis of crude protein utilisation in ruminant rations:
supplementation of limiting amino acids and their effect on the
environment – an updated review
Q. Sajid, M. Wilk, M. Asghar
Journal of Animal and Feed Sciences
2.
Functional analysis of microorganisms and metabolites in the cecum of different sheep populations and their effects on production traits
Quanlu Meng, Zhixiong Tang, Feifei Yang, Jinping Shi, Ting Liu, Shuru Cheng
Frontiers in Microbiology