ORIGINAL PAPER
 
KEYWORDS
TOPICS
ABSTRACT
While most meat quality traits (MQTs) are investigated in Angus cattle (AG), the differences in MQTs and the relationship of MQTs with the gut microbiota between AG and Xinjiang brown cattle (XBC) have not yet been well elucidated. Fourteen heads of 24-month-old uncastrated AG and XBC males (7 in each group) reared under identical feeding condition were selected for MQT testing. The composition and structure of the gut microbiota were analysed by 16S rRNA gene sequencing of rectal faecal samples. The correlation between MQTs and the gut microbiota was analysed. The results showed that backfat thickness of XBC was significantly lower compared to AG, and the muscular fibre sectional area was significantly higher than that of AG. The composition of the gut microbiota showed that the relative abundance of the genus rc4_4 was significantly lower in XBC in relation to AG cattle (P < 0.05) and Lefse analysis demonstrated that the family Peptostreptococcaceae were characteristic of the XBC gut. Thirteen genera of the gut microbiota significantly correlated with MQTs. The differential MQTs between Angus cattle and Xinjiang brow cattle related to fat metabolism/deposition were found to be associated with the relative abundance of certain gut microbial genera, which could serve as potential gut microbial biomarkers to assist in improving meat quality of Xinjiang brow cattle.
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
METADATA IN OTHER LANGUAGES:
Chinese
安格斯牛与新疆褐牛肉品质性状差异与肠道菌群的关系
摘要: 虽然安格斯牛(Angus cattle,AG)的大部分肉质性状(Meat quality traits,MQTs)已经被研究,但AG与新 疆褐牛(Xinjiang brown cattle,XBC)之间的MQT差异及其与肠道菌群的关系尚未得到很好的阐明。选取14头 24月龄未去势AG和XBC公牛(每组7只)在相同饲养条件下饲养,进行MQTs检测。采用16S rRNA基因测序方 法,对直肠采集的粪便样品进行菌群组成和结构分析。分析了MQTs与肠道菌群的相关性。结果表明,XBC 的背膘厚度显著低于AG,肌纤维截面积显著高于AG,肠道菌群结构组成显示XBC肠道中rc4_4属的相对丰度 显著低于AG(P < 0.05),Lefse分析表明消化链球菌科是XBC肠道中的特征菌群。与MQTs显著相关的肠道菌 群有13个属。因此,安格斯牛和新疆肉牛与脂肪代谢/沉积相关的MQTs差异与肠道菌群的相对丰度有关,可 作为辅助新疆肉牛肉质改良的潜在肠道菌群标志物。
REFERENCES (30)
1.
Bai H., Yang B., Dong Z., Li X., Song Q., Jiang Y., Chang G., Chen G., 2022. Research Note: effects of cage and floor rearing systems on growth performance, carcass traits, and meat quality in small-sized meat ducks. Poult. Sci. 101, 101520, https://doi.org/10.1016/j.psj....
 
2.
Bergamaschi M., Maltecca C., Schillebeeckx C., McNulty N.P., Schwab C., Shull C., Fix J., Tiezzi F., 2020. Heritability and genome-wide association of swine gut microbiome features with growth and fatness parameters. Sci. Rep. 10, 10134, https://doi.org/10.1038/s41598...
 
3.
Bernad-Roche M., Bellés A., Grasa L., Casanova-Higes A., Mainar-Jaime R.C., 2021. Effects of dietary supplementation with protected sodium butyrate on gut microbiota in growing-finishing pigs. Animals 11, 2137, https://doi.org/10.3390/ani110...
 
4.
Chen G., Cai Y., Su Y., Wang D., Pan X., Zhi X., 2021. Study of meat quality and flavour in different cuts of Duroc-Bamei binary hybrid pigs. Vet. Med. Sci. 7, 724–734, https://doi.org/10.1002/vms3.4...
 
5.
Crovesy L., Masterson D., Rosado E.L., 2020. Profile of the gut microbiota of adults with obesity: a systematic review. Eur. J. Clin. Nutr. 74, 1251–1262, https://doi.org/10.1038/s41430...
 
6.
Delgado B., Bach A., Guasch I., González C., Elcoso G., Pryce J.E., Gonzalez-Recio O., 2019. Whole rumen metagenome sequencing allows classifying and predicting feed efficiency and intake levels in cattle. Sci. Rep. 9, 11, https://doi.org/10.1038/s41598...
 
7.
Deng L., Ou Z., Huang D., Li C., Lu Z., Liu W., Wu F., Nong C., Gao J., Peng Y., 2020. Diverse effects of different Akkermansia muciniphila genotypes on Brown adipose tissue inflammation and whitening in a high-fat-diet murine model. Microb. Pathog. 147, 104353, https://doi.org/10.1016/j.micp...
 
8.
Ding S.R., Li G.S., Chen S.R., Zhu F., Hao J.P., Yang F.X., Hou Z.C., 2021. Comparison of carcass and meat quality traits between lean and fat Pekin ducks. Anim. Biosci. 34, 1193–1201, https://doi.org/10.5713/ajas.1...
 
9.
Du M., Tong J., Zhao J., Underwood K.R., Zhu M., Ford S.P., Nathanielsz P.W., 2010. Fetal programming of skeletal muscle development in ruminant animals. J. Anim. Sci. 88, E51–E60, https://doi.org/10.2527/jas.20...
 
10.
Fu X., Yang Q., Wang B., Zhao J., Zhu M., Parish S.M., Du M., 2018. Reduced satellite cell density and myogenesis in Wagyu compared with Angus cattle as a possible explanation of its high marbling. Animal 12, 990–997, https://doi.org/10.1017/S17517...
 
11.
Hakkak R., Korourian S., Foley S.L., Erickson B.D., 2017. Assessment of gut microbiota populations in lean and obese Zucker rats. PloS ONE 12, e0181451, https://doi.org/10.1371/journa...
 
12.
Khan T.J., Ahmed Y.M., Zamzami M.A., Mohamed S.A., Khan I., Baothman O., Mehanna M.G., Yasir M., 2018. Effect of atorvastatin on the gut microbiota of high fat diet-induced hypercholesterolemic rats. Sci. Rep. 8, 662, https://doi.org/10.1038/s41598...
 
13.
Kim J.Y., Kwon Y.M., Kim I.S., Kim J.A., Yu D.Y., Adhikari B., 2018. Effects of the brown seaweed Laminaria japonica supplementation on serum concentrations of IgG, triglycerides, and cholesterol, and intestinal microbiota composition in rats. Front. Nutr. 5, https://doi.org/10.3389/fnut.2...
 
14.
Kuno T., Hirayama-Kurogi M., Ito S., Ohtsuki S., 2018. Reduction in hepatic secondary bile acids caused by short-term antibiotic-induced dysbiosis decreases mouse serum glucose and triglyceride levels. Sci. Rep. 8, 1253, https://doi.org/10.1038/s41598...
 
15.
Luo Y., Wang B., Liu C., Su R., Hou Y., Yao D., Zhao L., Su L., Jin Y., 2019. Meat quality, fatty acids, volatile compounds, and antioxidant properties of lambs fed pasture versus mixed diet. Food Sci. Nutr. 7, 2796–2805, https://doi.org/10.1002/fsn3.1...
 
16.
Magnusson K.R., Hauck L., Jeffrey B.M., Elias V., Humphrey A., Nath R., Perrone A., Bermudez L.E., 2015. Relationships between diet-related changes in the gut microbiome and cognitive flexibility. Neuroscience 300, 128–140, https://doi.org/10.1016/j.neur...
 
17.
Mannelli F, Cappucci A., Pini F. et al., 2018. Effect of different types of olive oil pomace dietary supplementation on the rumen microbial community profile in Comisana ewes. Sci. Rep. 8, 8455, https://doi.org/10.1038/s41598...
 
18.
Noel S.J., Olijhoek D.W., Mclean F., Løvendahl P., Lund P., Højberg O., 2019. Rumen and fecal microbial community structure of Holstein and Jersey dairy cows as affected by breed, diet, and residual feed intake. Animals 9, 498, https://doi.org/10.3390/ani908...
 
19.
Saiyasit N., Chunchai T., Prus D. Suparan K., Pittayapong P., Apaijai N., Pratchayasakul W., Sripetchwandee J., Chattipakorn N., Chattipakorn S.C., 2020. Gut dysbiosis develops before metabolic disturbance and cognitive decline in high-fat diet-induced obese condition. Nutrition 69, 110576, https://doi.org/10.1016/j.nut....
 
20.
Schumacher M., DelCurto-Wyffels H., Thomson J., Boles J., 2022. Fat deposition and fat effects on meat quality- a review. Animals 12, 1550, https://doi.org/10.3390/ani121...
 
21.
Tamanai-Shacoori Z., Smida I., Bousarghin L., Loreal O., Meuric V., Fong S.B., Bonnaure-Mallet M., Jolivet-Gougeon A., 2017. Roseburia spp.: a marker of health? Future Microbiol. 12, 157–170, https://doi.org/10.2217/fmb-20...
 
22.
Tang S., Xin Y., Ma Y., Xu X., Zhao S., Cao J., 2020. Screening of microbes associated with swine growth and fat deposition traits across the intestinal tract. Front. Microbiol. 11, 586776, https://doi.org/10.3389/fmicb....
 
23.
Taniguchi M., Guan L.L., Basarab J.A., Dodson M.V., Moore S.S., 2008. Comparative analysis on gene expression profiles in cattle subcutaneous fat tissues. Comp. Biochem. Physiol. Part D Genomics Proteomics 3, 251–256, https://doi.org/10.1016/j.cbd....
 
24.
Tun H.M., Konya T., Takaro T.K. et al., 2017. Exposure to household furry pets influences the gut microbiota of infant at 3–4 months following various birth scenarios. Microbiome 5, 40, https://doi.org/10.1186/s40168...
 
25.
Whon T.W., Kim H.S., Shin N.R. et al., 2021. Male castration increases adiposity via small intestinal microbial alterations. EMBO Rep. 22, e50663, https://doi.org/10.15252/embr....
 
26.
Zhang Z., Yang L., He Y., Luo X., Zhao S., Jia X., 2021. Composition of fecal microbiota in grazing and feedlot Angus beef cattle. Animals 11, 3167, https://doi.org/10.3390/ani111...
 
27.
Zheng Y., Chen J., Wang X., Han L., Yang Y., Wang Q., Yu Q., 2022. Metagenomic and transcriptomic analyses reveal the differences and associations between the gut microbiome and muscular genes in angus and Chinese Simmental cattle. Front. Microbiol. 13, 815915, https://doi.org/10.3389/fmicb....
 
28.
Zhou J.H., Li P., Liu L.Y., Zhao G.L., Huang X.X., 2017. Present situation of Xinjiang brown cattle germplasm resources and suggestions on population genetic improvement. Chin. J. Anim. Sci. 53, 38–43
 
29.
Zierer J., Jackson M.A., Kastenmüller G. et al., 2018. The fecal metabolome as a functional readout of the gut microbiome. Nat. Genet. 50, 790–795, https://doi.org/10.1038/s41588...
 
30.
Ziętak M., Kovatcheva-Datchary P., Markiewicz L.H., Ståhlman M., Kozak L.P., Bäckhed F., 2016. Altered microbiota contributes to reduced diet-induced obesity upon cold exposure. Cell Metab. 23, 1216–1223, https://doi.org/10.1016/j.cmet...
 
ISSN:1230-1388
Journals System - logo
Scroll to top