ORIGINAL PAPER
 
KEYWORDS
TOPICS
ABSTRACT
The gut microbiota plays a crucial role in nutrient absorption, health maintenance and protecting the host against pathogen invasion. Studies have shown that the microbial composition and diversity of gut microbiota during early life can influence later growth and development. While specific pathogen-free (SPF) experimental animals are considered standard in biomedical, veterinary, and production research fields, little is known about the composition and diversity of the gut microbiota during the early developmental stages of these birds. Therefore, the present study aimed to explore the structure and changes of the gut microbiota during the early life of SPF chickens. Faecal DNA was sampled from randomly selected chickens, followed by high-throughput sequencing of the V3-V4 region of the 16S rRNA gene, at 11, 13, 15, and 17 days of age, designated as experimental groups D11, D13, D15, and D17. The sequencing results indicated that day 17 of life may be a turning point for gut microbiota colonisation, exhibiting a notable 51.98% increase in the number of operational taxonomic units compared to 15 days old birds. Analysis of faecal bacterial community compositions across the four age groups of SPF chickens showed dominance of Firmicutes, Proteobacteria, and Bacteroidetes in groups D11, D13, and D15, while Firmicutes, Proteobacteria, and Cyanobacteria were dominant in group D17. Additionally, group D17 had the highest number of bacterial genera and greatest diversity among the four groups tested. This study systematically elucidated the structure and dynamics of the gut microbiota during early life of chickens and provided a benchmark for future research on chicken gut microbiota.
FUNDING
This work was supported by the National Natural Science Foundation of China Youth Science Foundation (32102752), the Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding (2019B030301010).
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
 
REFERENCES (44)
1.
EFSA FEEDAP Panel., 2019. Safety and efficacy of Probion forte®(Bacillus subtilis KCCM 10941P and Bacillus coagulans KCCM 11093P) for chickens for fattening. EFSA J. 17, e05644, https://doi.org/10.2903/j.efsa...
 
2.
Amit-Romach E., Sklan D., Uni Z., 2004. Microflora ecology of the chicken intestine using 16S ribosomal DNA primers. Poult. Sci. 83, 1093–1098, https://doi.org/10.1093/ps/83....
 
3.
Baldwin S., Hughes R.J., Hao Van T.T., Moore R.J., Stanley D., 2018. At-hatch administration of probiotic to chickens can introduce beneficial changes in gut microbiota. PloS. One. 13, e0194825, https://doi.org/10.1371/journa...
 
4.
Bao Y., Dolfing J., Wang B., Chen R., Huang M., Li Z., Lin X., Feng Y., 2019. Bacterial communities involved directly or indirectly in the anaerobic degradation of cellulose. Biol. Fertil. Soils. 55, 201–211, https://doi.org/10.1007/s00374...
 
5.
Barka E.A., Vatsa P., Sanchez L., Gaveau-Vaillant N., Jacquard C., Klenk H.-P., Clément C., Ouhdouch Y., van Wezel G.P., 2016. Taxonomy, physiology, and natural products of Actinobacteria. Microbiol. Mol. Biol. Rev. 80, 1–43, https://doi.org/10.1128/mmbr.0...
 
6.
Bilal M., Achard C., Barbe F., Chevaux E., Ronholm J., Zhao X., 2021. Bacillus pumilus and Bacillus subtilis promote early maturation of cecal microbiota in broiler chickens. Microorganisms 9, 1899 https://doi.org/10.3390/microo...
 
7.
Bolger A.M., Lohse M., Usadel B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120, https://doi.org/10.1093/bioinf...
 
8.
Bolton W., 1965. Digestion in the crop of the fowl. Br. Poult. Sci. 6, 97–102, https://doi.org/10.1080/000716...
 
9.
Bolyen E., Rideout J.R., Dillon M.R. et al., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857, https://doi.org/10.1038/s41587...
 
10.
Chambers J.R., Gong J., 2011. The intestinal microbiota and its modulation for Salmonella control in chickens. Food. Res. Int. 10, 3149–3159, https://doi.org/10.1016/j.food...
 
11.
Chavoya-Guardado M.A., Vasquez-Garibay E.M., Ruiz-Quezada S.L., Ramírez-Cordero M.I., Larrosa-Haro A., Castro-Albarran J., 2022. Firmicutes, bacteroidetes and actinobacteria in human milk and maternal adiposity. Nutrients. 14, 2887, https://doi.org/10.3390/nu1414...
 
12.
De Filippo C., Cavalieri D., Di Paola M., Ramazzotti M., Poullet J.B., Massart S., Collini S., Pieraccini G., Lionetti P., 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. U S A. 107, 14691–14696, https://doi.org/10.1073/pnas.1...
 
13.
DiGiulio D.B., Romero R., Amogan H.P., Kusanovic J.P., Bik E.M., Gotsch F., Kim C.J., Erez O., Edwin S., Relman D.A., 2008. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS One 3, e3056, https://doi.org/10.1371/journa...
 
14.
Donaldson E., Stanley D., Hughes R., Moore R., 2017. The time-course of broiler intestinal microbiota development after administration of cecal contents to incubating eggs. Peer J. 20, 5: e3587, https://doi.org/10.7717/peerj....
 
15.
Edgar R.C., 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461, https://doi.org/10.1093/bioinf...
 
16.
Edgar R.C., Haas B.J., Clemente J.C., Quince C., Knight R., 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 27, 2194–2200, https://doi.org/10.1093/bioinf...
 
17.
Feng X., Zhu H., Chen B., Zhu C., Hu Z., Zhang H., 2020. Effects of phytosterols supplementation on growth performance and intestinal microflora of yellow-feather broilers. Poult. Sci. 99, 6022–6030, https://doi.org/10.1016/j.psj....
 
18.
Gan L., Zhao Y., Mahmood T., Guo Y., 2020. Effects of dietary vitamins supplementation level on the production performance and intestinal microbiota of aged laying hens. Poult. Sci. 99, 3594–3605 https://doi.org/10.1016/j.psj....
 
19.
He Y., Li J., Wang F., Na W., Tan Z., 2023. Dynamic Changes in the Gut Microbiota and Metabolites during the Growth of Hainan Wenchang Chickens. Animals (Basel). 13, 348, https://doi.org/10.3390/ani130...
 
20.
Hooper L.V., Falk P.G., Gordon J.I., 2000. Analyzing the molecular foundations of commensalism in the mouse intestine. Curr. Opin. Microbiol. 3, 79–85, https://doi.org/10.1016/s1369-...
 
21.
Joat N., Bajagai Y.S., Van T.T.H., Stanley D., Chousalkar K., Moore R.J., 2023. The temporal fluctuations and development of faecal microbiota in commercial layer flocks. Anim. Nutr. 15, 197–209, https://doi.org/10.1016/j.anin...
 
22.
Joat N., Van T.T.H., Stanley D., Moore R.J., Chousalkar K., 2021. Temporal dynamics of gut microbiota in caged laying hens: a field observation from hatching to end of lay. Appl. Microbiol. Biotechnol. 105, 4719–4730, https://doi.org/10.1007/s00253...
 
23.
Johnson C.L., Versalovic J., 2012. The human microbiome and its potential importance to pediatrics. Pediatrics. 129, 950–960, https://doi.org/10.1542/peds.2...
 
24.
Kers J.G., Velkers F.C., Fischer E.A., Hermes G.D., Stegeman J.A., Smidt H., 2018. Host and environmental factors affecting the intestinal microbiota in chickens. Front. Microbiol. 16, 235, https://doi.org/10.3389/fmicb....
 
25.
Larsberg F., Sprechert M., Hesse D., Loh G., Brockmann G.A., Kreuzer-Redmer S., 2023. Probiotic Bacillus strains enhance T cell responses in chicken. Microorganisms 11, 269, https://doi.org/10.3390/microo...
 
26.
Ley R.E., Turnbaugh P.J., Klein S., Gordon J.I., 2006. Human gut microbes associated with obesity. Nature 444, 1022–1023, https://doi.org/10.1038/444102...
 
27.
Martin M., 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12, https://doi.org/10.14806/ej.17...
 
28.
Medvecky M., Cejkova D., Polansky O., Karasova D., Kubasova T., Cizek A., Rychlik I., 2018. Whole genome sequencing and function prediction of 133 gut anaerobes isolated from chicken caecum in pure cultures. BMC. Genomics. 19, 561, https://doi.org/10.1186/s12864...
 
29.
Mohd Shaufi M., Sieo C., Chong C., Gan H., Ho Y., 2015. Deciphering chicken gut microbial dynamics based on high-throughput 16S rRNA metagenomics analyses. Gut Pathog. 26, 4, https://doi.org/10.1186/s13099...
 
30.
Moretti A.F., Gamba R., De Antoni G., Peláez Á.L., Golowczyc M.A., 2022. Probiotic characterization of indigenous lactic acid bacteria isolates from chickens to be used as biocontrol agents in poultry industry. J Food Process Pres. 12, e17145, https://doi.org/10.1111/jfpp.1...
 
31.
Putignani L., Del Chierico F., Petrucca A., Vernocchi P., Dallapiccola B., 2014. The human gut microbiota: a dynamic interplay with the host from birth to senescence settled during childhood. Pediatr. Res. 76, 2–10, https://doi.org/10.1038/pr.201...
 
32.
Saxena, V. K., Tomar, S., Gonmei, G., Sapcota, D., 2016. Characterisation of caecum and crop microbiota of Indian indigenous chicken targeting multiple hypervariable regions within 16S rRNA gene. Br. Poult. Sci. 57381–57389, https://doi.org/10.1080/000716...
 
33.
Stanley D., Hughes R.J., Moore R.J., 2014. Microbiota of the chicken gastrointestinal tract: influence on health, productivity and disease. Appl. Microbiol. Biotechnol. 98, 4301–4310, https://doi.org/10.1007/s00253...
 
34.
Takeshita N., Watanabe T., Ishida-Kuroki K., Sekizaki T., 2021. Transition of microbiota in chicken cecal droppings from commercial broiler farms. BMC. Vet. Res. 17–10, https://doi.org/10.1186/s12917...
 
35.
Videnska P., Sedlar K., Lukac M., Faldynova M., Gerzova L., Cejkova D., Sisak F., Rychlik I., 2014. Succession and replacement of bacterial populations in the caecum of egg laying hens over their whole life. PLoS. One 9, e115142, https://doi.org/10.1371/journa...
 
36.
Wang L., Lilburn M., Yu Z., 2016. Intestinal microbiota of broiler chickens as affected by litter management regimens. Front. Microbiol. 7, 593, https://doi.org/10.3389/fmicb....
 
37.
Wielen P.W.J.J., Keuzenkamp D.A., Lipman L.J.A., Knapen F., Biesterveld S., 2002. Spatial and Temporal Variation of the Intestinal Bacterial Community in Commercially Raised Broiler Chickens During Growth. Microb. Ecol. 44, 286–293, https://doi.org/10.1007/s00248...
 
38.
Xi Y., Shuling N., Kunyuan T., Qiuyang Z., Hewen D., ChenCheng G., Tianhe Y., Liancheng L., Xin F., 2019. Characteristics of the intestinal flora of specific pathogen free chickens with age. Microb. Pathog. 132, 325–334, https://doi.org/10.1016/j.micp...
 
39.
Xu H., Lu Y., Li D. et al., 2023. Probiotic mediated intestinal microbiota and improved performance, egg quality and ovarian immune function of laying hens at different laying stage. Front. Microbiol. 14, 1041072, https://doi.org/10.3389/fmicb....
 
40.
Yeoman C.J., Chia N., Jeraldo P., Sipos M., Goldenfeld N.D., White B.A., 2012. The microbiome of the chicken gastrointestinal tract. Anim. Health. Res. Rev. 13, 89–99, https://doi.org/10.1017/S14662...
 
41.
Zeng X., Liu Z., Dong Y. et al., 2022. Social hierarchy dictates intestinal radiation injury in a gut microbiota-dependent manner. Int. J. Mol. Sci. 23, 13189, https://doi.org/10.3390/ijms23...
 
42.
Zhou W., Wang Y., Lin J., 2012. Functional cloning and characterization of antibiotic resistance genes from the chicken gut microbiome. Appl. Environ. Microbiol. 78, 3028–3032, https://doi.org/10.1128/AEM.06...
 
43.
Zhu X.Y., Zhong T., Pandya Y., Joerger R.D., 2002. 16S rRNA-Based Analysis of Microbiota from the Cecum of Broiler Chickens. Appl. Environ. Microbiol. 68, 124–137, https://doi.org/10.1128/aem.68...
 
44.
Zhuang Y., Chai J., Cui K., Bi Y., Diao Q., Huang W., Usdrowski H., Zhang N., 2020. Longitudinal investigation of the gut microbiota in goat kids from birth to postweaning. Microorganisms. 8, 1111, https://doi.org/10.3390/microo...
 
ISSN:1230-1388
Journals System - logo
Scroll to top