ORIGINAL PAPER
Chemical composition and fermentation characteristics of feedstuffs for giraffes (Giraffa camelopardalis) in German zoos
,
 
,
 
 
 
More details
Hide details
1
University of Bonn, Institute of Animal Science, Endenicher Allee 15, 53115 Bonn, Germany
 
2
University of Göttingen, Department of Animal Sciences, Kellnerweg 6, 37077 Göttingen, Germany
 
 
Publication date: 2016-05-19
 
 
Corresponding author
K.-H. Südekum   

University of Bonn, Institute of Animal Science, Endenicher Allee 15, 53115 Bonn, Germany
 
 
J. Anim. Feed Sci. 2016;25(2):134-144
 
KEYWORDS
ABSTRACT
The aim of the study was to evaluate the nutritive value of feedstuffs for giraffes in zoos. In total, 196 samples of six categories of forage (n = 111) and eight categories of non-forage feedstuffs (n = 85) were analysed for chemical composition and in vitro gas production (GP). Lucerne hay as main forage source showed a stable average quality (mean ± standard deviation: crude protein 179 ± 19 g · kg–1 dry matter (DM); metabolizable energy 8.9 ± 0.6 MJ · kg–1 DM) and its fibre fraction content was the most similar to browse leaves. Depending on the type, browse showed large variation in composition and fermentation. Supplementation of polyethylene glycol as tannin-binding agent, led to a significant increase of GP in leaves and bark. According to application, non-forage feeds differed in energy and crude protein contents, and fibre fractions. The chemical composition and GP of dehydrated lucerne pellets were very similar to lucerne hay, whereas other compound feeds were balanced. Characteristics of sugar beet pulp would ensure a beneficial fermentation when compared to other high-energy feedstuffs. A dietary substitution of fruits and vegetables with sugar beet pulp led to less distinct peaks in the theoretical GP of whole rations over 24 h. Available nutritive recommendations for giraffes in captivity were generally confirmed; however, the protein delivering capacity of lucerne hay was suspected to be undervalued. Comprehensive analyses of leaves and bark resulted in additional information on temperate browse.
REFERENCES (35)
1.
Abdulrazak S.A., Fujihara T., Ondiek J.K., Ørskov E.R., 2000. Nutritive evaluation of some Acacia tree leaves from Kenya. Anim. Feed Sci. Tech. 85, 89–98.
 
2.
Austin P.J., Suchar L.A., Robbins C.T., Hagerman A.E., 1989. Tanninbinding proteins in saliva of deer and their absence in saliva of sheep and cattle. J. Chem. Ecol. 15, 1335–1347.
 
3.
Baer D.J., Oftedal O.T., Fahey Jr. G.C., 1985. Feed selection and digestibility by captive giraffes. Zoo Biol. 4, 57–64.
 
4.
Brandt M., Schuldt A., Mannerkorpi P., Vearasilp T., 1987. Zur enzymatischen Stärkebestimmung im Darminhalt und Kot von Kühen mit hitzestabiler Amylase. Arch. Anim. Nutr. 37, 455 (Abstr.).
 
5.
Elahi M.Y., Rouzbehan Y., Rezaee A., 2012. Effects of phenolic compounds in three oak species on in vitro gas production using inoculums of two breeds of indigenous Iranian goats. Anim. Feed Sci. Tech. 176, 26–31.
 
6.
GfE, 2001. Empfehlungen zur Energie- und Nährstoffversorgung der Milchkühe und Aufzuchtrinder. DLG-Verlag. Frankfurt am Main (Germany), pp. 136.
 
7.
GfE, 2008. New equations for predicting metabolisable energy of grass and maize products for ruminants. Proc. Soc. Nutr. Physiol. 17, 191–198.
 
8.
GfE, 2009. New equations for predicting metabolisable energy of compound feeds for cattle. Proc. Soc. Nutr. Physiol. 18, 143–146.
 
9.
Hatt J.-M., Schaub D., Wanner M., Wettstein H.-R., Flach E.J., Tack C., Hässig M., Ortmann S., Hummel J., Clauss M., 2005. Energy and fibre intake in a group of captive giraffe (Giraffa camelopardalis) offered increasing amounts of browse. J. Vet. Med. Ser. A 52, 485–490.
 
10.
Hummel J., Clauss M., 2006. Feeding. In: Z. Barta, M. Clauss, L. Culik, M. Damen, J. Hummel, G. Schleussner, K. Tomasova, W. Zimmermann (Editors). EAZA Husbandry and Management Guidelines for Giraffa camelopardalis. Burgers Zoo. Arnhem (the Netherlands), pp. 29–61.
 
11.
Hummel J., Nogge G., Clauss M., Nørgaard C., Johanson K., Nijboer J., Pfeffer E., 2006a. Energy supply of the okapi in captivity: Fermentation characteristics of feedstuffs. Zoo Biol. 25, 251–266.
 
12.
Hummel J., Zimmermann W., Langenhorst T., Schleussner G., Damen M., Clauss M., 2006b. Giraffe husbandry and feeding practices in Europe. Results of an EEP survey. Proc. Eur. Assoc. Zoo Wild. Vet. Conf. 6, 71–74.
 
13.
Lagowski J.M., Sell H.M., Huffman C.F., Duncan C.W., 1958. The carbohydrates in alfalfa Medicago sativa. I. General composition, identification of a nonreducing sugar and investigation of the pectic substances. Arch. Biochem. Biophys. 76, 303–316.
 
14.
LfL, 2015. Gruber Tabelle zur Fütterung der Milchkühe, Zuchtrinder, Schafe, Ziegen. 37. unveränderte Auflage. Kastner AG. Wolznach (Germany), pp. 94.
 
15.
Losand B., Alert H.-J., Arrigo Y. et al., 2014. Energiebestimmung von Grobfuttermitteln aus kleinkörnigen Leguminosen. VDLUFASchriftenr. 69, 761–769.
 
16.
Mahjoubi E., Amanlou H., Zahmatkesh M., Ghelich Khan M., Aghaziarati N., 2009. Use of beet pulp as a replacement for barley grain to manage condition score in over-conditioned late lactation cows. Anim. Feed Sci. Tech. 153, 60–67.
 
17.
Makkar H.P.S., Blümmel M., Becker K., 1995. Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and tannins, and their implication in gas production and true digestibility in in vitro techniques. Brit. J. Nutr. 73, 897–913.
 
18.
Menke K.-H., Steingass H., 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28, 7–55.
 
19.
NRC, 2001. Nutrient Requirements of Dairy Cattle. 7th revised Edition. National Academies Press. Washington, DC.
 
20.
Odongo N.E., Valdes E.V., McBride B.W., 2006. Technical Note: Acidogenicity value and rumen acid load of common zoo animal feeds. Prof. Anim. Sci. 22, 194–199.
 
21.
Oftedal O.T., Baer D.J., Allen M.E., 1996. The feeding and nutrition of herbivores. In: D.G. Kleiman (Editor). Wild Mammals in Captivity: Principles and Techniques. University of Chicago Press. Chicago, IL (USA), pp. 129–138.
 
22.
Ørskov E.R., McDonald I., 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agr. Sci. 92, 499–503.
 
23.
Owen-Smith R.N., 1988. Megaherbivores: The Influence of Very Large Body Size on Ecology. Cambridge University Press. Cambridge (UK), pp. 369.
 
24.
Pellew R.A., 1984. Food consumption and energy budgets of the giraffe. J. Appl. Ecol. 21, 141–159.
 
25.
Phatak L., Chang K.C., Brown G., 1988. Isolation and characterization of pectin in sugar beet pulp. J. Food Sci. 53, 830–833.
 
26.
Robbins C.T., Moen A.N., 1975. Composition and digestibility of several deciduous browses in the Northeast. J. Wildlife Manage. 39, 337–341.
 
27.
Robbins C.T., Mole S., Hagerman A.E., Hanley T.A., 1987. Role of tannins in defending plants against ruminants: Reduction in dry matter digestion? Ecology 68, 1606–1615.
 
28.
Rubanza C.D.K., Shem M.N., Otsyina R., Bakengesa S.S., Ichinohe T., Fujihara T., 2005. Polyphenolics and tannins effect on in vitro digestibility of selected Acacia species leaves. Anim. Feed Sci. Tech. 119, 129–142.
 
29.
Steuer P., Südekum K.-H., Tütken T., Müller D.W.H., Kaandorp J., Bucher M., Clauss M., Hummel J., 2014. Does body mass convey a digestive advantage for large herbivores? Funct. Ecol. 28, 1127–1134.
 
30.
Thornton R.F., Minson D.J., 1973. The relationship between apparent retention time in the rumen, voluntary feed intake, and apparent digestibility of legume and grass diets in sheep. Aust. J. Agr. Res. 24, 889–898.
 
31.
Universität Hohenheim – Dokumentationsstelle, 1997. DLG-Futterwerttabellen für Wiederkäuer. 7th Edition. DLG-Verlag. Frankfurt am Main (Germany), pp. 112.
 
32.
Van Soest P.J., 1988. A comparison of grazing and browsing ruminants in the use of feed resources. In: E.F. Thomson, F.S. Thomson (Editors). Increasing Small Ruminant Productivity in Semi-Arid Areas. ICARDA. Aleppo (Syria), pp. 67–79.
 
33.
Van Soest P.J., 1994. Nutritional Ecology of the Ruminant. 2nd Edition. Cornell University Press. Ithaca, NY (USA), pp. 374.
 
34.
Van Soest P.J., Robertson J.B., Lewis B.A., 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597.
 
35.
VDLUFA, 2012. VDLUFA-Methodenbuch Bd. III, Die chemische Untersuchung von Futtermitteln. 8. Erg. VDLUFA-Verlag. Darmstadt (Germany).
 
 
CITATIONS (6):
1.
Influence of ration composition on nutritive and digestive variables in captive giraffes (Giraffa camelopardalis ) indicating the appropriateness of feeding practice
I. Gussek, C. Große-Brinkhaus, K.-H. Südekum, J. Hummel
Journal of Animal Physiology and Animal Nutrition
 
2.
Rumen content stratification in the giraffe (Giraffa camelopardalis)
Cathrine Sauer, Marcus Clauss, Mads F. Bertelsen, Martin R. Weisbjerg, Peter Lund
Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
 
3.
Effect of pelleted cereal-based feed for addax antelope (Addax nasomaculatus) on feed intake and nutrient digestibility
M. Przybyło, P. Górka, P. Tyl, J. Kański, A. Kloska
Journal of Animal and Feed Sciences
 
4.
Preference of intake of different tree leaves preserved with drying and ensiling by nyala antelope ( Tragelaphus angasii )
Marcin Przybyło, Sylwia Kazek, Alina Kloska, Jan Pyś, Paweł Górka
Zoo Biology
 
5.
Ensiling of maple leaves and its use in winter nutrition of mantled guereza ( Colobus guereza )
Olga Lasek, Patrycja Rajtar, Andrzej Malec, Wojciech Bielatowicz, Marcin Przybyło
Zoo Biology
 
6.
An investigation of browsing enrichment, especially non‐leaf foraging, on giraffes ( Giraffa camelopardalis reticulata ) at Kyoto City Zoo in Japan
Kota Okabe, Hiroki Fukuizumi, Ayumi Kawamura, Chihiro Kase, Katsuji Uetake
Zoo Biology
 
ISSN:1230-1388
Journals System - logo
Scroll to top