ORIGINAL PAPER
 
KEYWORDS
TOPICS
ABSTRACT
Early lactation is very demanding on the ovine maternal body and represents a critical stage for development of newborn lambs. Therefore, our study aimed to investigate the composition of sheep’s milk during the initial phase of lactation, when it undergoes the greatest alterations due to adaptation to the changing nutritional needs of lambs. Twenty-one Polish Mountain sheep were assigned to three experimental groups. Milk samples were collected at day 20 (n = 7, L20), 30 (n = 7, L30), and 40 (n = 7, L40) of lactation. Parameters such as fatty acid (FA) profi le, concentrations of orotic acid (OA), malondialdehyde (MDA), total cholesterol (Ch) and selected chemical forms of vitamin E were determined using gas and liquid chromatography methods. Multivariate statistical analysis was used to detect subtle changes in milk composition between short sampling intervals. FA profi le analysis revealed that the L30 samples were characterised by the highest content of all examined FA. The most abundant were palmitic, stearic, oleic, linoleic, rumenic, α-linolenic, γ-linolenic, and eicosapentaenoic acids. The highest levels of Ch and MDA were recorded in the L20 samples, while OA was predominant in milk from the L30 group. No signifi cant differences in tocopherols content were found at individual lactation days. The research allowed to conclude that milk of Polish Mountain sheep has a nutritionally benefi cial composition, especially in the early lactation stage, which can support the proper growth of lambs.
FUNDING
We would like to acknowledge the financial support provided by the statutory funds of The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland.
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
REFERENCES (66)
1.
Białek A., Białek M., Lepionka T., Czerwonka M., Czauderna M., 2020. Chemometric analysis of fatty acids profile of ripening chesses. Molecules 25, 1814, https://doi.org/10.3390/molecu....
 
2.
Białek M., Czauderna M., 2016. Chemical Structure and Physiological Functions of Selected Antioxidants (in Polish). Instytut Fizjologii i Żywienia Zwierząt im. Jana Kielanowskiego, Polskiej Akademii Nauk, Jabłonna.
 
3.
Białek M., Czauderna M., Białek A., 2017. Conjugated linolenic acid (CLnA) isomers as new bioactive lipid compounds in ruminant-derived food products. A review. J. Anim. Feed Sci. 26, 3–17, https://doi.org/10.22358/jafs/....
 
4.
Bojkowski Ł., Mojs E., 2016. The role of polyunsaturated fatty acids in selected areas of the human psychological functioning. Pol. Przegląd Nauk o Zdrowiu 1.
 
5.
Brożek O.M., Kiełczewska K., Bohdziewicz K., 2022. Fatty acid profile and thermal characteristics of ovine and bovine milk and their mixtures. Int. Dairy J. 129, 105339, https://doi.org/10.1016/j.idai....
 
6.
Castillo C., Hernández J., Valverde I., Pereira V., Sotillo J., Löpez Alonso M., Benedito J.L., 2006. Plasma malonaldehyde (MDA) and total antioxidant status (TAS) during lactation in dairy cows. Res. Vet. Sci. 80, 133–139, https://doi.org/10.1016/j.rvsc....
 
7.
Chen B., Zhu H., Zhang Y., Wang X., Zhang W., Wang Y., Pang X., Zhang S., Lv J., 2024. Comparison of species and lactation of different mammalian milk: The unique composition and stereospecificity of fatty acids of mare milk. Int. Dairy J. 150, 105822, https://doi.org/10.1016/j.idai....
 
8.
Czauderna M., Białek M., Molik E., Zaworski K., 2021. The improved method for determination of orotic acid in milk by ultra-fast liquid chromatography with optimized photodiode array detection. Animals 11, 3196, https://doi.org/10.3390/ani111....
 
9.
Czauderna M., Karpińska M., Woliński J., Zaworski K., Białek M., Pierzynowski S., Wojtak W., Pierzynowska K., 2023. Improved lipid saponification for chromatographic quantification of fatty acids in porcine erythrocytes - an important lipidomic biomarker of the effectiveness of dietary fat supplementation in pigs as a large animal model for human studies. J. Anim. Feed Sci. 32, 385-399, https://doi.org/10.22358/jafs/....
 
10.
Czauderna M., Kowalczyk J., Marounek M., 2011. The simple and sensitive measurement of malondialdehyde in selected specimens of biological origin and some feed by reversed phase high performance liquid chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 879, 2251-2258, https://doi.org/10.1016/j.jchr....
 
11.
Czauderna M., Kowalczyk J., Niedźwiedzka K.M., 2009. Simple HPLC analysis of tocopherols and cholesterol from specimens of animal origin. Chem. Anal. (Warsaw) 54, 203-214.
 
12.
Czauderna M., Wojtak W., Białek M., Białek A., 2024. Optimization of high-efficient pre-column sample treatments and C18-UFLC method for selective quantification of selected chemical forms of tocopherol and tocotrienol in diverse foods. Food Chem. 437, 137909, https://doi.org/10.1016/j.food....
 
13.
Daniel M., Florin L., 2016. Factors affecting fatty acid profile of sheep milk fat. Anele Univ. Din Oradea Fasc. Ecotoxicologie Zooteh. Si Tehnol. Indutrie Aliment. 15, 385–394.
 
14.
Diao Q., Zhang R., Fu T., 2019. Review of strategies to promote rumen development in calves. Animals 9, 490, https://doi.org/10.3390/ani908....
 
15.
Drąg J., Goździalska A., Jaśkiewicz J., 2014. Omega-3 fatty acids and neuropsychiatric disorders (in Polish). Państwo i Społeczeństwo 14, 97-109.
 
16.
Echeverría F., Valenzuela R., Catalina Hernandez-Rodas M., Valenzuela A., 2017. Docosahexaenoic acid (DHA), a fundamental fatty acid for the brain: New dietary sources. Prostaglandins Leukot. Essent. Fat. Acids 124, 1–10, https://doi.org/10.1016/j.plef....
 
17.
Feitelson M.A., Arzumanyan A., Medhat A., Spector I., 2023. Short-chain fatty acids in cancer pathogenesis. Cancer Metastasis Rev. 42, 677–698, https://doi.org/10.1007/s10555....
 
18.
Flis Z., Szczecina J., Molik E., 2022. The role of sheep’s milk bioactive substances in the prevention of metabolic and viral diseases. J. Anim. Feed Sci. 31, 211–216, https://doi.org/10.22358/jafs/....
 
19.
Govari M., Iliadis S., Papageorgiou D., Fletouris D., 2020. Seasonal changes in fatty acid and conjugated linoleic acid contents of ovine milk and kefalotyri cheese during ripening. Int. Dairy J. 109, 104775, https://doi.org/10.1016/j.idai....
 
20.
Graulet B., 2014. Ruminant milk: A source of vitamins in human nutrition. Anim. Front. 4, 24–30, https://doi.org/10.2527/af.201....
 
21.
Güler Z., Keskin M., Dursun A., Gül S., Gündüz Z., Önel S.E., 2018. Effects of waiting period before milking on orotic, uric and hippuric acid contents of milks from shami and kilis goats. Tarim Bilim. Derg. 24, 170–178, https://doi.org/10.15832/ankut....
 
22.
He J., Zhang P., Shen L. et al., 2020. Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism. Int. J. Mol. Sci., https://doi.org/10.3390/ijms21....
 
23.
Hrkovic-Porobija A., Hodzic A., Vegara M., Ohran H., Softic A., Kavazovic A., Varatanovic M., 2019. The fatty acid composition of sheep’s milk of an autochthonous breed. Biotechnol. Anim. Husb. 35, 35–47, https://doi.org/10.2298/BAH190....
 
24.
ICAR T.G.S.F.L.D., 2018. Guidelines for Performance Recording in Dairy Sheep and Dairy Goats [WWW Document], https://www.icar.org/Guideline... (accessed 11.9.23).
 
25.
Indyk H.E., Woollard D.C., 2004. Determination of Orotic Acid, Uric Acid, and Creatinine in Milk by Liquid Chromatography. J. AOAC Int. 87, 116–122, https://doi.org/10.1093/jaoac/....
 
26.
Inostroza K., Bravo S., Larama G., Saenz C., Sepúlveda N., 2020. Variation in milk composition and fatty acid profile during the lactation of araucana creole ewes in a pasture-based system. Animals 10, 92, https://doi.org/10.3390/ani100....
 
27.
Kawęcka A., Sikora J., 2022. Husbandry and breeding of sheep and goats, including native breeds (in Polish). Centrum Doradztwa Rolniczego w Brwinowie, Brwinów.
 
28.
Kowalska M., Cichosz G., 2013. Dairy products - the best source of cla (in Polish). Bromatol. i Chem. Toksykol. 46, 1–12.
 
29.
Löffler M., Carrey E.A., Zameitat E., 2015. Orotic acid, more than just an intermediate of pyrimidine de novo synthesis. J. Genet. Genomics 42, 207–219, https://doi.org/10.1016/j.jgg.....
 
30.
Markiewicz-Keszycka M., Czyzak-Runowska G., Lipinska P., Wójtowski J., 2013. Fatty acid profile of milk - A review. J. Vet. Res. 57, 135–139, https://doi.org/10.2478/bvip-2....
 
31.
Marynowicz W., Borski N., Flis Z., Ptak A., Molik E., 2023. Orotic acid induces apoptotic death in ovarian adult granulosa tumour cells and increases mitochondrial activity in normal ovarian granulosa cells. Reprod. Biol. 23, 1–10, https://doi.org/10.1016/j.repb....
 
32.
Matar A.M., Abdelrahman M.M., Ayadi M., Aljummah R.S., 2023. Identifying the influence of the dietary polyunsaturated fatty acid content on milk quality traits in najdi sheep at different stages of lactation. Appl. Sci. 13, 11834, https://doi.org/10.3390/app132....
 
33.
Michlová T., Dragounová H., Horníčková Š., Hejtmánková A., 2015. Factors influencing the content of vitamins A and E in sheep and goat milk. Czech J. Food Sci. 33, 58–65, https://doi.org/10.17221/149/2....
 
34.
Michlová T., Horníčková Š., Dragounová H., Hejtmánková A., 2014. Quantitation of vitamins A and E in raw sheep milk duringlactation period. Agron. Res. 12, 737–744.
 
35.
Milewski S., 2006. Health-promoting properties of sheep products (in Polish). Med. Wet. 62, 516-519.
 
36.
Miltko R., Kowalik B., Bełżecki G., 2016. Native ruminants. Nutritional types, division and characteristics (in Polish). Instytut Fizjologii i Żywienia Zwierząt im. Jana Kielanowskiego Polskiej Akademii Nauk, Jabłonna.
 
37.
Mohapatra A., Shinde A.K., Singh R., 2019. Sheep milk: A pertinent functional food. Small Rumin. Res. 181, 6–11, https://doi.org/10.1016/j.smal....
 
38.
Molik E., Błasiak M., Nahajło K., 2018. Health benefits of sheep’s milk and factors influencing the content of active compounds in it (in Polish). Przegląd Hod. 2, 16–19.
 
39.
Molik E., Błasiak M., Pustkowiak H., 2020. Impact of photoperiod length and treatment with exogenous melatonin during pregnancy on chemical composition of sheep’s milk. Animals 10, 1–11, https://doi.org/10.3390/ani101....
 
40.
Molik E., Javadiesfahani R., Murawski M., Schwarz T., Jamieson M., Ahmadi B., Bartlewski P.M., 2023. A preliminary study of the relationships between echotextural characteristics of the mammary gland and chemical composition of milk during early lactation in ewes. Ann. Anim. Sci. 23, 1071–1083, https://doi.org/10.2478/aoas-2....
 
41.
Molik E., Stańko K., Flis Z., 2021. The health-promoting role of bioactive substances in sheep milk (in Polish). Przegląd Hod. 3, 18–21.
 
42.
Pesántez-Pacheco J.L., Heras-Molina A., Torres-Rovira L. et al., 2019a. Influence of maternal factors (weight, body condition, parity, and pregnancy rank) on plasma metabolites of dairy ewes and their lambs. Animals 9, 1–19, https://doi.org/10.3390/ani904....
 
43.
Pesántez-Pacheco J.L., Heras-Molina A., Torres-Rovira L. et al., 2019b. Maternal metabolic demands caused by pregnancy and lactation: Association with productivity and offspring phenotype in high-yielding dairy ewes. Animals 9, 295, https://doi.org/10.3390/ani906....
 
44.
Pietrzak-Fiećko R., Kamelska-Sadowska A.M., 2020. The comparison of nutritional value of human milk with other mammals’ milk. Nutrients 12, 1404, https://doi.org/10.3390/nu1205....
 
45.
Ptáček M., Milerski M., Ducháček J., Schmidová J., Tančin V., Uhrinčať M., Stádník L., Michlová T., 2019. Analysis of fatty acid profile in milk fat of Wallachian sheep during lactation. J. Dairy Res. 86, 233–237, https://doi.org/10.1017/S00220....
 
46.
Rosenfeldt F.L., Richards S.M., Lin Z., Pepe S., Conyers R.A.J., 1998. Mechanism of cardioprotective effect of orotic acid mechanism of action of orotic acid. Cardiovasc. Drugs Ther. 12, 159–170, https://doi.org/10.1023/A:1007....
 
47.
Russel A.J.F., Doney J.M., Gunn R.G., 1969. Subjective assessment of body fat in live sheep. J. Agric. Sci. 72, 451–454, https://doi.org/10.1017/S00218....
 
48.
Rutkowska J., Adamska A., Białek M., 2011. Comparision of fatty acid composition in mare’s and cow’s milk fat (in Polish). Food. Sci. Technol. Qual. 1, 28–38, https://doi.org/10.15193/zntj/....
 
49.
Selmi H., Bahri A., Rouissi H., 2020. Nutrition for Lactation of Dairy Sheep, Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization. IntechOpen, https://doi.org/10.5772/intech....
 
50.
Sinanoglou V.J., Koutsouli P., Fotakis C., Sotiropoulou G., Cavouras D., Bizelis I., 2015. Assessment of lactation stage and breed effect on sheep milk fatty acid profile and lipid quality indices. Dairy Sci. Technol. 95, 509–531, https://doi.org/10.1007/s13594....
 
51.
Statistica software, Version 13,3; 2016. StatSoft: Cracow, Poland.
 
52.
Strzetelski J.A., Brzóska F., Kowalski Z.M., Osięgłowski S., 2014. Feeding Recomendation for ruminants and Feed Tables (in Polish). Instytut Zootechniki PIB, Kraków
 
53.
Szczechowiak J., Cieślak A., Szumacher-Strabel M., 2014. Fat Transformations in the Rumen (in Polish). Przegląd Hodowlany 4, 15–17.
 
54.
Takizawa S., Shinkai T., Kobayashi Y., Masuda M., Hashiba K., Uchisawa K., Terada F., 2023. Rumen microbial composition associated with the non-glucogenic to glucogenic short-chain fatty acids ratio in Holstein cows. Anim. Sci. J. 94, e13829, https://doi.org/10.1111/asj.13....
 
55.
Tashla T., 2021. Oxidative Stress During Pregnancy and Lactation of Lohi Sheep. University Business Academy in Novi Sad, Novi Sad.
 
56.
Taormina V.M., Unger A.L., Schiksnis M.R., Torres-Gonzalez M., Kraft J., 2020. Branched-chain fatty acids-an underexplored class of dairy-derived fatty acids. Nutrients 12, 1–16, https://doi.org/10.3390/nu1209....
 
57.
Tufarelli V., Colonna M.A., Losacco C., Puvača N., 2023. Biological health markers associated with oxidative stress in dairy cows during lactation period. Metabolites 13, https://doi.org/10.3390/metabo....
 
58.
Wang S., Ma T., Zhao G., Zhang N., Tu Y., Li F., Cui K., Bi Y., Ding H., Diao Q., 2019. Effect of age and weaning on growth performance, rumen fermentation, and serum parameters in lambs fed starter with limited ewe-lamb interaction. Animals 9, 825, https://doi.org/10.3390/ani910....
 
59.
Wu X., Wang F., Chen M., Wang J., Zhang Y., 2023. Quantification of free short-chain fatty acids in raw cow milk by gas chromatography-mass spectrometry. Foods 12, 1367, https://doi.org/10.3390/foods1....
 
60.
Yang B., Chen H., Liu Y., Luo Y., He B., Wang S., Wang J., 2023. Alfalfa intervention alters the colonization of rumen epithelial bacteria to promote rumen development and lamb health during early life. Anim. Feed Sci. Technol. 306, 115797, https://doi.org/10.1016/j.anif....
 
61.
Yehia S.G., Ramadan E.S., Megahed E.A., Salem N.Y., 2021. Influence of season and lactation stage on oxidative, haematological, and metabolic profile parameters in holstein dairy cows. Adv. Anim. Vet. Sci. 9, 2095–2102, https://doi.org/10.17582/journ....
 
62.
Yehia S.G., Ramadan E.S., Megahed E.A., Salem N.Y., 2020. Effect of parity on metabolic and oxidative stress profiles in Holstein dairy cows. Vet. World 13, 2780–2786, https://doi.org/10.14202/vetwo....
 
63.
Youssef M., Hilali M.E.D., Saab S.A., 2022. Awassi sheep milk fatty acid profile during lactation under a traditional grazing system in semi-arid regions. J. Anim. Plant Sci. 32, 909–917, https://doi.org/10.36899/JAPS.....
 
64.
Zampelas A., Magriplis E., 2019. New insights into cholesterol functions: a friend or an enemy? Nutrients 11, 1645, https://doi.org/10.3390/nu1107....
 
65.
Zhang Y., Zhao H., Li Q., Tsechoe D., Yuan H., Su G., Yang J., 2022. Environmental factors influence yak milk composition by modulating short-chain fatty acid metabolism in intestinal microorganisms. LWT - Food Sci. Technol. 163, 113608, https://doi.org/10.1016/j.lwt.....
 
66.
Zhen Y., Xi Z., Nasr S.M. et al., 2023. Multi-omics reveals the impact of exogenous short-chain fatty acid infusion on rumen homeostasis: insights into crosstalk between the microbiome and the epithelium in a goat model. Microbiol. Spectr. 11, e05343-22, https://doi.org/10.1128/spectr....
 
ISSN:1230-1388
Journals System - logo
Scroll to top