ORIGINAL PAPER
 
KEYWORDS
TOPICS
ABSTRACT
In a 42-day study, a total of 195 [(Landrace × Yorkshire) × Duroc)] piglets with 6.52 ± 0.59 kg were randomly assigned into three treatments with 13 replication and five pigs (3 barrows and 2 gilts) per pen, which was used to evaluate the impact of weaning pig diets including almond hulls (AH) on growth performance, nutrient utilization, fecal microbiome, noxious gas emissions, and fecal score. The following dietary treatment groups were used: Basal diet as control; basal diet + 3% almond hull as TRT1; basal diet + 6% almond hull as TRT2. At the end of the experiment, ADG (average daily gain), and gain to feed ratio (G: F) presented a trend in increase (p < 0.10). However, the average daily feed intake (ADFI) remained constant (p > 0.05) along with nutrient digestibility, fecal microbiome (Salmonella, E.coli, and Lactobacillus), and fecal score. Among noxious gases, only NH3 tended to reduce (p < 0.10) and other gases (CO2, H2S, Methyl mercaptans, acetic acid) remained steady (p > 0.05). These findings indicated that the inclusion of AH in diet could improve growth performance and reduce NH3 gas discharges without negative effect on nutrient absorption, microbial count, and fecal score in weaned piglets.
FUNDING
This research was financially supported by Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF-RS-2023-00275307).
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
REFERENCES (30)
1.
Ahammad G.S., Lim C.B., Kim I.H., 2023. Effect of dietary almond hull on growth performance, nutrient digestibility, fecal microbial, fecal score, and noxious gas emission in growing pigs. Can. J. Anim. Sci. (in press), https://doi.org/10.1139/cjas-2....
 
2.
Ani A.O., Ezemagu I.E., Ugwuowo L.C., 2013. Growth performance of weaner pigs fed soybean hull-based diets. Online J. Anim. Feed Res. 3, 137–142.
 
3.
AOAC, 2000. Association of Official Analytical Chemists International. Official methods of analysis of AOAC International. 17th Ed., AOAC International, Washington (DC), USA.
 
4.
Canh T.T., Sutton A.L., Aarnink A.J.A., Verstegen M.W.A., Schrama J.W., Bakker G.C.M., 1998. Dietary carbohydrates alter the fecal composition and pH and the ammonia emission from slurry of growing pigs. J. Anim. Sci. 76, 1887–1895, https://doi.org/10.2527/1998.7....
 
5.
Chen T., Chen D., Tian G., Zheng P., Mao X., Yu J., Yu B., 2020. Effects of soluble and insoluble dietary fiber supplementation on growth performance, nutrient digestibility, intestinal microbe and barrier function in weaning piglet. Anim. Feed Sci. Technol. 260, 114335, https://doi.org/10.1016/j.anif....
 
6.
Clouard C., Stokvis L., Bolhuis J.E., Van Hees H.M.J., 2018. Short communication: insoluble fibres in supplemental pre-weaning diets affect behaviour of suckling piglets. Animals 12, 329–333, https://doi.org/10.1017/S17517....
 
7.
Flis M., Sobotka W., Antoszkiewicz Z., 2017. Fiber substrates in the nutrition of weaned piglets–a review. Ann. Anim. Sci. 17, 627–644, https://doi.org/10.1515/aoas-2....
 
8.
Freire J., Guerreiro A., Cunha L., Aumaitre A., 2000. Effect of dietary fibre source on total tract digestibility, fecal volatile fatty acids and digestive transit time in the weaned piglet. Anim. Feed Sci Technol. 87, 71–83, https://doi.org/10.1016/S0377-....
 
9.
Gibson G.R., Beatty E.R., Wang X., Cummings J.H., 1995. Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108, 975, https://doi.org/10.1016/0016-5....
 
10.
Hedemann M.S., Eskildsen M., Laerke H.N., Pedersen C., Lindberg J.E., Laurine P., Kdnudsen K.E., 2006. Intestinal morphology and enzymatic activity in newly weaned pigs fed contrasting fiber concentrations and fiber properties. J. Anim. Sci. 84, 1375–1386, https://doi.org/10.2527/2006.8....
 
11.
Holtman K.M., Offeman R.D., Franqui-Villanueva D., Bayati A.K., Orts W.J., 2015. Countercurrent extraction of soluble sugars from almond hulls and assessment of the bioenergy potential. J. Agric. Food Chem. 63, 2490–2498, https://doi.org/10.1021/jf5048....
 
12.
Huang C.F., Zhang S., Stein H.H., Zhao J.B., Li D.F., Lai, C.H., 2018. Effect of inclusion level and adaptation duration on digestible energy and nutrient digestibility in palm kernel meal fed to growing-finishing pigs. Asian-Australas. J. Anim. Sci. 31, 395–402, https://doi.org/10.5713/ajas.1....
 
13.
Jeaurond E.A., Rademacher M., Pluske J.R., Zhu C.H., de Lange C.F.M., 2008. Impact of feeding fermentable proteins and carbohydrates on growth performance, gut health and gas-trointestinal function of newly weaned pigs. Can. J. Anim. Sci. 88, 271–281, https://doi.org/10.4141/CJAS07....
 
14.
Lesschen J.P., Van den Berg M., Westhoek H.J., Witzke H.P., Oenema O., 2011.Greenhouse gas emission profiles of European livestock sectors. Anim. Feed Sci. Technol. 166, 16–28, https://doi.org/10.1016/j.anif....
 
15.
Li X., Liu Y., Hao J., Wang W., 2018. Study of almond shell characteristics. Materials 11, 1782, https://doi.org/10.3390/ma1109....
 
16.
Lizardo R., Peiniau J., Aumaıˆtre A., 1997. Consequences of the inclusion of sugar beet pulp in diets for early weaned and growing pigs. Ann. Zootech. 46, 281–294.
 
17.
Low A.G., 1985. Role of dietary fibre in pig diets in: Recent Advances in Animal Nutrition, pp. 87–112, https://doi.org/10.1016/B978-0....
 
18.
Mateos G.G., Martin F., Latorre M.A., Vicente B., Lazaro R., 2006. Inclusion of oat hulls in diets for young pigs based on cooked maize or cooked rice. Anim. Sci. 82, 57–63, https://doi.org/10.1079/ASC200....
 
19.
Mateos G.G., Jiménez-Moreno E., Serrano M.P., Lázaro R.P., 2012. Poultry response to high levels of dietary fiber sources varying in physical and chemical characteristics. J. Appl. Poult. Res. 21, 156–174, https://doi.org/10.3382/japr.2....
 
20.
Molist F., Van Oostrum M., Pérez J. F., Mateos G. G., Nyachoti C. M., Van Der Aar P. J., 2014. Relevance of functional properties of dietary fibre in diets for weanling pigs. Anim. Feed Sci. Technol. 189, 1–10, https://doi.org/10.1016/j.anif....
 
21.
NRC, 2012. Nutrient requirements of swine. 11th Ed. National Academy Press, Washington (DC), USA.
 
22.
Ngoc T.T.B., Thao T.T.T., Dung P.V., 2021. Effects of different fibre sources in pig diets on growth performance, gas emissions and slurry characteristics. Adv. Anim. Vet. Sci. 9, 63–72, https://doi.org/10.17582/journ....
 
23.
Pascoal L.A.F., Thomaz M.C., Watanabe P.H., dos Santos U., Ezequiel J.M.B., Amorim A.B., Daniel E., Masson G.C.I., 2012. Fiber sources in diets for newly weaned piglets. Rev. Bras. Zootec. 41, 636–642, https://doi.org/10.1590/S1516-....
 
24.
Pieper R., Kröger S., Richter J., et al., 2012. Fermentable fiber ameliorates fermentable protein-induced changes in microbial ecology, but not the mucosal response, in the colon of piglets. J. Nutr. 142, 661–667, https://doi.org/10.3945/jn.111....
 
25.
Prgomet I., Gonçalves B., Domínguez-Perles R., Pascual-Seva N., Barros A.I.R.N.A., 2017. Valorization Challenges to almond residues: phytochemical composition and functional application. Molecules 22, 1774, https://doi.org/10.3390/molecu....
 
26.
Schedle K., Plitzner C., Ettle T., Zhao L., Domig K.J., Windisch W., 2008. Effects of insoluble dietary fibre differing in lignin on performance, gut microbiology, and digestibility in weanling piglets. Arch. Anim. Nutr. 62, 141–151, https://doi.org/10.1080/174503....
 
27.
SAS, 2014. Statistical Analysis System. SAS user’s guide. SAS Institute Inc., Cary (NC), USA.
 
28.
Verschuren L.M., Calus M.P., Jansman A.J., Bergsma R., Knol E.F., GilbertH., Zemb O., 2018. Fecal microbial composition associated with variation in feed efficiency in pigs depends on diet and sex. J. Anim. Sci. 96,1405–1418, https://doi.org/10.1093/jas/sk....
 
29.
Wellock I.J., Fortomaris P.D., Houdijk J.G.M., Wisemann J., Kyriazakis I., 2008. The consequences of non-starch polysaccharide solubility and inclusion level on the health and performance of weaned pigs challenged with enterotoxigenic Escherichia coli. Br. J. Nutr. 99, 520–530, https://doi.org/10.1017/S00071....
 
30.
Yu C., Zhang S., Yang Q., Peng Q., Zhu J., Zeng X., Qiao S., 2016. Effect of high fibre diets formulated with different fibrous ingredients on performance, nutrient digestibility and faecal microbiota of weaned piglets. Arch. Anim. Nutr. 70, 263–277, https://doi.org/10.1080/174503....
 
ISSN:1230-1388
Journals System - logo
Scroll to top