ORIGINAL PAPER
 
KEYWORDS
TOPICS
ABSTRACT
The objective of the study was to examine the effect of supplementing sheep diets with humic substances (HS) on the number of protozoa and short chain fatty acid and methane concentrations in the rumen. The experiment was carried out in three rumen-fistulated sheep. The control (CON) ration was composed of 59.70% hay and 40.30% concentrate. Two experimental diets consisting of the same components were supplemented with two doses of humic substrates, 10 (HS10) or 20 (HS20) g/day/animal. The population of total protozoa and the genera Entodinium and Isotricha in the rumen was the most abundant before feeding (0 h) and decreased 2 and 4 h after receiving the diets. The populations of total protozoa and the genus Entodinum in the rumen were more abundant 2 h after administration of HS10 and HS20 compared to CON. The counts of these groups of protozoa increased 8 h after feeding HS10 compared to CON and HS20. An interaction trend (sampling time × treatment) was detected in terms of the number of Isotricha spp. in the rumen. The postprandial (2 and 4 h) pH of the rumen was lower than 0 h and 8 h after feeding CON and HS. Short chain fatty acid concentration was higher 2 and 4 h after feeding compared to 0 h and 8 h postprandial. An interaction trend was as assessed based on acetic acid levels; the highest was observed 4 h after feeding HS20 and the lowest 8 h after feeding HS10. Butyrate concentration was lower 8 h after feeding compared to 2 and 4 h postprandial levels for sheep fed the CON and HS10 diets. Branched chain acid production was the lowest 8 h after feeding compared to 0 h and 2 h after HS10 administration. An interaction trend was observed for methane levels; the highest was showed 4 h after feeding HS20 and the lowest 8 h after feeding HS10 diets. HS supplemented to sheep diets increased the abundance of total protozoa and the genera Entodinium and Isotricha in the rumen. It seemed that humates could modify the production of acetate and methane in the rumen, as slight increases in these parameters were observed. This suggests that humic substances can intensify methanogenesis in the rumen.
FUNDING
This work was supported by the statutory funding of The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences.
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
METADATA IN OTHER LANGUAGES:
Chinese
腐植酸对绵羊瘤胃内纤毛虫种群和发酵参数有影响吗?
摘要: 本试验旨在研究在绵羊日粮中添加腐殖质(Humic substances,HS)对瘤胃内原虫数量、短链脂肪酸和 甲烷浓度的影响。试验使用3只瘤胃瘘管绵羊。对照组(CON)日粮由59.70%干草和40.30%精料组成。在两 种成分相同的日粮中分别添加10(HS10)或20(HS20)g/d动物腐殖质。瘤胃内总原虫、肠菌属和等毛菌属 在饲喂前(0 h)数量最多,饲喂2 h和4 h后下降。与CON相比,HS10和HS20处理2 h后瘤胃内原虫和肠内菌 属数量更丰富。与CON和HS20相比,HS10的原虫数量在8 h后有所增加。瘤胃内等毛虫数量呈交互作用趋势 (采样时间×处理)。饲喂CON和HS后2 h和4 h瘤胃pH均低于0 h和8 h。短链脂肪酸浓度在饲喂后2 h和4 h显著高 于餐后0 h和8 h。根据醋酸水平评估相互作用趋势,在饲喂HS20后4 h最高,在HS10之后8 h最低。饲喂CON 和HS10日粮的绵羊在饲喂8 h后丁酸浓度低于饲喂后2 h和4 h。与HS10给药0 h和2 h相比,给药8 h后支链酸产量 最低。甲烷水平有交互作用的趋势,最高出现在饲喂HS20后4 h,最低出现在饲喂HS10饲料后8 h。观察到甲 烷水平的相互作用趋势;投喂HS20后4 h最高,投喂HS10后8 h最低。在绵羊日粮中添加HS能提高瘤胃内原虫 总数和内毛虫属、等毛虫属的丰度。腐殖质似乎可以改变瘤胃中乙酸和甲烷的产量,因为观察到这些参数 略有增加。这表明腐殖质可以强化瘤胃内的甲烷生成。
 
REFERENCES (34)
1.
AOAC Interntional, 2005. Official Methods of Analysis of AOAC International. 18th Edition. Arlington, VA (USA)
 
2.
Belanche A., de la Fuente G., Newbold C.J., 2014. Study of methanogen communities associated with different rumen protozoal populations. FEMS Microbial. Ecol. 90, 663–677, https://doi.org/10.1111/1574-6...
 
3.
El-Zaiat H.M., Morsy A.S., El-Wakeel E.A., Anwer M.M., Sallam S.M., 2018. Impact of humic acid as an organic additive on ruminal fermentation constituents, blood parameters and milk production in goats and their kids growth rate. J. Anim. Feed Sci. 27, 105–113, https://doi.org/10.22358/jafs/...
 
4.
Degirmencioglu T., 2014. Using humic acid in diets for dairy goats. Anim. Sci. Pap. Rep. 32, 25–32
 
5.
Dehority B.A., 1993. Laboratory manual for classification and morphology of rumen ciliate protozoa. CRC Press Inc. London (UK)
 
6.
Galip N., Polat U., Biricik H., 2010. Effect of supplemental humic acid on ruminal fermentation and blood variables in rams. Ital. J. Anim. Sci. 9, e74, https://doi.org/10.4081/ijas.2...
 
7.
Huck T.A., Porter N., Bushell M.E., 1991. Effect of humates on microbial activity. Gen. Microbiol. 137, 2321–2329
 
8.
Islam K.M., Schumacher S.A., Gropp J.M., 2005. Humic acid substances in animal agriculture. Pak. J. Nutr. 4, 126–134
 
9.
IZ-PIB INRA, 2009. Sheep. In: E. Jarrige (Editor). Ruminant nutrition. Recommended allowances and feed tables (in Polish). National Research Institute of Animal Production. Balice (Poland), pp. 163–166
 
10.
Kasperowicz A., Stan-Głasek K., Kowalik B., Vandzurova A., Pristas P., Pająk J., Kwiatkowska E., Michałowski T., 2014. Effect of dietary fructose polymers or sucrose on microbial fermentation, enzyme activity, ciliate concentration and diversity of bacterial flora in the rumen of rams. Anim. Feed Sci. Technol. 195, 38–46, https://doi.org/10.1016/j.anif...
 
11.
Majewska M.P., Miltko R., Skomiał J., Kowalik B., 2017a. Influence of humic acid supplemented to sheep diets on the rumen enzymatic activity. Med. Weter. 73, 770–773, https://doi.org/10.21521/mw.58...
 
12.
Majewska M.P., Miltko R., Bełżecki G., Skomiał J., Kowalik B., 2017b. Supplementation of rapeseed and linseed oils to sheep rations: effects on ruminal fermentation characteristics and protozoal populations. Czech J. Anim. Sci. 62, 525–538, https://doi.org/10.17221/9/201...
 
13.
Majewska M.P., Kowalik B., 2020. Growth performance, carcass characteristics, fatty acid composition and blood biochemical parameters of lamb fed diet with the addition of lingonberry leaves and oak bark. Eur. J. Lipid Sci. Technol. 122, 1900273, https://doi.org/10.1002/ejlt.2...
 
14.
Majewska M.P., Miltko R., Bełżecki G., Kowalik B., 2021. Population of protozoa and carbohydrate-digesting enzymes in the rumen of sheep fed a diet supplementing with yeast Saccharomyces cerevisiae. Small Rumin. Res. 205, 106544, https://doi.org/10.1016/j.smal...
 
15.
Marcin A., Bujňák L., Mihok T., Nad’ P., 2020. Effects of humic substances with urea on protozoal population and fermentation in the rumen of sheep. Bulg. J. Vet. Med. 23, 60–69, https://doi.org/10.15547/bjvm....
 
16.
McMurphy C.P., Duff G.C., Harris M.A., Sanders S.R., Chirase N.K., Bailey C.R., Ibrahim R.M., 2009. Effect of humic/fulvic acid in beef cattle finishing diets on animal performance, ruminal ammonia and serum urea nitrogen concentration. J. Appl. Anim. Res. 35, 97–100, https://doi.org/10.1080/097121...
 
17.
McMurphy C.P., Duff G.C., Sanders S.R., Cuneo S.P., Chirase N.K., 2011. Effects of supplementing humates on rumen fermentation in Holstein steers. S. Afr. J. Anim. Sci. 41, 134–140, https://doi.org/10.4314/sajas....
 
18.
Mertens D.R., 2002. Gravimetric determination of amylase-treated neutral detergent fibre in feeds with refluxing in beakers or crucibles: collaborative study. J. AOAC Int. 85, 1217–1240
 
19.
Michałowski T., 1987. The volatile fatty acids production by ciliate protozoa in the rumen of sheep. Acta Protozzol. 26, 335–345
 
20.
Michałowski T., 1990. The distribution of ciliates through the reticulo-rumen of sheep. Acta Protozool. 3, 213–220
 
21.
Miltko R., Rozbicka-Wieczorek A.J., Wiesyk E., Czauderna M., 2016a. The influence of different chemical forms of selenium added to the diet including carnosic acid, fish oil and rapeseed oil on the formation of volatile fatty acids and methane in rumen and fatty acid profiles in the rumen content and muscles of lambs. Acta Vet.-Beograd 66, 373–391, https://doi.org/10.1515/acve-2...
 
22.
Miltko R., Bełżecki G., Kowalik B., Skomiał J., 2016b. Presence of carbohydrate-digesting enzymes throughout the digestive tract of sheep. Turk. J. Vet. Anim. Sci. 40, 271–277, https://doi.org /10.3906/vet-1507-70
 
23.
Mirnawati Y.R., Marlida Y., 2013. Effects of humic acid addition via drinking water on the performance of broilers fed diets containing fermented and non-fermented palm kernel cake. Arch. Zootech. 16, 41–53
 
24.
Morgavi D.P., Forano E., Martin C., Newbold C.J., 2010. Microbial ecosystem and methanogenesis in ruminants. Animal 4, 1024–1036, https://doi.org/10.1017/S17517...
 
25.
Moss A.R., Jouany J.-P., Newbold J., 2000. Methane production by ruminants: its contribution to global warming. Ann. Zootech. 49, 231–253, https://doi.org/10.1051/animre...
 
26.
Newbold C.J., de la Fuente G., Belanche A., Ramos-Morales E., McEwan N.R., 2015. The role ciliate protozoa in the rumen. Front. Microbiol. 6, 1313, https://doi.org/10.3389/fmicb....
 
27.
Sheng P., Ribeiro G.O., Wang Y., McAllister T.A., 2019. Humic substances reduce ruminal methane production and increase the efficiency of microbial protein synthesis in vitro. J. Sci. Food Agric. 99, 2152–2157, https://doi.org/10.1002/jsfa.9...
 
28.
Sopoliga I., Hreško-Šamudovská A., Demetrová M., Nad’ P., Marcin A., Skalická M., 2016. Effect of humic substances on the production parameters of pheasant hens. Acta Fytotech. Zootech. 19, 11–14, https://dx.doi.org/10.15414/af...
 
29.
Terry S.A., Ribeiro G.O., Gruninger R.J., Hunererg M., Ping S., Chaves A.V., Burlet J., Beauchemin K.A., McAllister T.A.J., 2018a. Effect of humic substances on rumen fermentation, nutrient digestibility, methane emission, and rumen microbiota in beef heifers. J. Anim. Sci. 96, 3863–3877, https://doi.org/10.1093/jas/sk...
 
30.
Terry S.A., Ramos A.F.O., Holman D.B., McAllister T.A., Breves G., Chaves A.V., 2018b. Humic substances alter ammonia production and the microbial populations within a Rusitec fed a mixed hay – concentrate diet. Front. Microbiol. 9, 1410, https://doi.org/10.3389/fmicb....
 
31.
Teter A., Kędzierska-Matysek M., Barłowska J., Król J., Brodziak A., Florek M., 2021. The effect of humic mineral substances from oxyhumolite on the coagulation properties and mineral content of the milk of Holstein-Friesian cows. Animals 11, 1970, https://doi.org/10.3390/ani110...
 
32.
Trziszka T., Dobrzański, Z., Kaźmierska, M., Tronina Ł., Skiba M., 2011. Effect of dietary humic-fatty preparations on egg quality Lohmann Brown hens. Arch. Geflugelk. 75, 84–90
 
33.
Váradyová Z., Kišidayová S., Jalč D., 2009. Effect of humic acid on fermentation and ciliate protozoan population in rumen fluid of sheep in vitro. J. Sci. Agric. 89, 1936–1941, https://doi.org/10.1002/jsfa.3...
 
34.
Wang Q., Ying J., Zou P., Zhou Y., Wang B., Yu D., Li W., Zhan X., 2020. Effects of dietary supplementation of humic acid sodium and zinc oxide on growth performance, immune status and antioxidant capacity of weaned piglets. Animals 10, 2104, https://doi.org/10.3390/ani101...
 
 
CITATIONS (3):
1.
Feeding Damascus goats humic or fulvic acid alone or in combination: in vitro and in vivo investigations on impacts on feed intake, ruminal fermentation parameters, and apparent nutrients digestibility
Sobhy Sallam, Mahmoud Ibrahim, Ali Allam, Ahmed El-Waziry, Marwa Attia, Mahmoud Elazab, Amr El-Nile, Hani El-Zaiat
Tropical Animal Health and Production
 
2.
The Effect of Humic Acid Supplementation on Selected Ruminal Fermentation Parameters and Protozoal Generic Distribution in Cows
Svetlana Malyugina, Pavel Horky
Agriculture
 
3.
The effect of natural and synthetic zeolites on polysaccharidase activity in the rumen of Jersey heifers
M. P. Majewska, U. Wolska-Świętlicka, R. Miltko, G. Bełżecki, A. Kędzierska, B. Kowalik
Journal of Animal and Feed Sciences
 
ISSN:1230-1388
Journals System - logo
Scroll to top