ORIGINAL PAPER
 
KEYWORDS
TOPICS
ABSTRACT
The purpose of the study was to verify whether increasing the content of tyrosine and phenylalanine in the feed would result in more intense colouration of chinchilla fur and affect the animals’ reactions to behavioural tests. Chinchillas were divided into 3 groups: G-1 fed complete commercial fodder (Tyr 6.91 mg/g, Phe 7.45 mg/g), G-2 fed commercial and experimental fodder (1:1 ratio), and G-3 fed with experimental fodder (Tyr 14.31 mg/g, Phe 21.65 mg/g). During the experiment, the fur colouration type was assessed using two methods: objective, with a colorimeter (CIE L*a*b* colour space: L* – light-dark axis, a* – red-green axis, b* – yellow-blue axis, C* – colour saturation), and subjective, by a qualified chinchilla judge. A behavioural hand test was used to categorise the chinchillas’ responses to human intrusion into their cage. The results from the colorimeter measurements did not show any significant differences in the L* (P > 0.05) component; however, significant differences were observed for the a* (P = 0.0029), b* (P = 0.0218), and C* (P = 0.0342) components in relation to the fur colouration of individual groups. The assessment of the colour type by a qualified specialist found statistically significant differences (P < 0.05) between the initial and final measurements. Spearman’s correlation coefficients between colour type assessment and colour components were mostly low or medium, but with stronger values observed for L* compared to a*, b* or C*. There were no significant effects of the feeding group on the results of the and test. However, a decreasing trend was observed in the hand test results for G-3 from week 5 of the measurements
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
REFERENCES (39)
1.
Barabasz B., 2008. Chinchillas – Farm breeding (in Polish). Powszechne Wydawnictwo Rolnicze i Leśne. Warsaw (Poland)
 
2.
Bosch G., Beerda B., Hendriks W.H., van der Poel A.F.B., Verstegen M.W.A., 2007. Impact of nutrition on canine behaviour: current status and possible mechanisms. Nutr. Res. Rev. 20, 180–194, https://doi.org/10.1017/S09544...
 
3.
Browning H., 2020. The natural behavior debate: two conceptions of animal welfare. J. Appl. Anim. Welf. Sci. 23, 325–337, https://doi.org/10.1080/108887...
 
4.
Busch-Kschiewan K., Zentek J., Wortmann F.J., Biourge V., 2004. UV light, temperature, and humidity effects on white hair colour in dogs. J. Nutr. 134, 2053S–2055S, https://doi.org/10.1093/jn/134...
 
5.
Clausen T.N., Sandbøl P. 2009. Coat colour in Mink (Mustela vison). Effect of amino acids and chelated minerals (Phe & Tyr, plus Fe, Cu & Zn). Scientifur 33, 106
 
6.
ČSCH, 2021. Vystavy. ČSCH specializovaná organizace chovatelů činčil jihoamerických (in Czech). http://socsch-cincily.guffoo.c... (downloaded 1.02.2022)
 
7.
EPVC, 2019. International Chinchilla Assessment. Europäische Preisrichter Vereinigung für Chinchilla. https://www.pdf-archive.com/20...? (downloaded 02.09.2022)
 
8.
Finn J.L., Haase B., Willet C.E., van Rooy D., Chew T., Wade C.M., Hamilton N.A., Velie B.D., 2016. The relationship between coat colour phenotype and equine behaviour: a pilot study. Appl. Anim. Behav. Sci. 174, 66–69, https://doi.org/10.1016/j.appl...
 
9.
Ito S., 2003. A chemist's view of melanogenesis. Pigm. Cell. Res. 16, 230–236, https://doi.org/10.1034/j.1600...
 
10.
Jimenez J.E., 1996. The extirpation and current status of wild chinchillas Chinchilla lanigera and C. brevicaudata. Biol. Conserv. 77, 1–6, https://doi.org/10.1016/0006-3...
 
11.
KCHZ, 2012. Template for the assessment of the chinchilla phenotype (in Polish). National Animal Breeding Centre. Warsaw (Poland)
 
12.
Keeler C., Mellinger T., Fromm E., Wade L., 1970. Melanin, adrenalin and the legacy of fear. J. Hered. 61, 81–88, https://doi.org/10.1093/oxford...
 
13.
Korhonen H., 1988. Activity and behaviour of farmed raccoon dogs. Scientifur 12, 27–37
 
14.
Kühn S., Düzel S., Colzato L., Norman K., Gallinat J., Brandmaier A.M., Lindenberger U., Widaman K.F., 2019. Food for thought: association between dietary tyrosine and cognitive performance in younger and older adults. Psychol. Res. 83, 1097–1106, https://doi.org/10.1007/s00426...
 
15.
Lehnert H., Reinstein D.K., Strowbridge B.W., Wurtman R.J., 1984. Neurochemical and behavioral consequences of acute, uncontrollable stress: effects of dietary tyrosine. Brain Res. 303, 215–223, https://doi.org/10.1016/0006-8...
 
16.
Łapiński S., 2018. European Chinchilla Breeders Committee – Report (in Polish). Informator dla Hodowców Szynszyli 4, 9–10
 
17.
Łapiński S., Bzymek J., Niedbała P., Migdał Ł., Zoń A., Lis M., 2013. Effect of age and temperament type on reproductive parameters of female raccoon dogs (Nyctereutes Procyonoides, Gray). Ann. Anim. Sci. 13, 807–814, https://doi.org/10.2478/aoas-2...
 
18.
Łapiński S., Niedbała P., Markowska K., Rutkowska A., Lis M.W., 2023. The effects of age, size, and complexity on the behaviour of farmed female chinchillas (Chinchilla lanigera). Sci. Rep. 13, 6108
 
19.
Łapiński S., Pałka S., Migdał Ł., Maj D., Bieniek J., 2014. The influence of toys on changes in the temperament of the American mink (Neovison vison) (in Polish). Zwierzęta Futerkowe 3, 16–19
 
20.
Łapiński S., Pałka S., Wrońska D., Guja I., Zoń A., Niedbała P., Sergina S.N., 2019. Effect of cage enrichment on the welfare of farmed foxes. Med. Weter. 75, 665–668, http://dx.doi.org/10.21521/mw....
 
21.
Mafli A., Wakamatsu K., Roulin A., 2011. Melanin-based colouration predicts aggressiveness and boldness in captive eastern Hermann’s tortoises. Anim. Behav. 81, 859–863, https://doi.org/10.1016/j.anbe...
 
22.
Morris J.G., Yu S., Rogers Q.R., 2002. Red hair in black cats is reversed by addition of tyrosine to the diet. J. Nutr. 132, 1646S–1648S, https://doi.org/10.1093/jn/132...
 
23.
Ozeki H., Ito S., Wakamatsu K., Hirobe T., 1995. Chemical characterization of hair melanins in various coat-colour mutants of mice. J. Invest. Dermatol. 105, 361–366, https://doi.org/10.1111/1523-1...
 
24.
Prota G., 1995. The chemistry of melanins and melanogenesis. In: W. Herz, G.W. Kirby, R.E. Moore, W. Steglich, C. Tamm (Editors). Progress in the Chemistry of Organic Natural Products 64. Springer Vienna. Vienna (Austria), pp. 93–148, https://doi.org/10.1007/978-3-...
 
25.
Quesada J., Senar J. C., 2007. The role of melanin‐ and carotenoid‐based plumage colouration in nest defence in the great tit. Ethology 113, 640–647, https://doi.org/10.1111/j.1439...
 
26.
Rauch T.M., Lieberman H.R., 1990. Tyrosine pretreatment reverses hypothermia-induced behavioral depression. Brain Res. Bull. 24, 147–150, https://doi.org/10.1016/0361-9...
 
27.
Roach N., Kennerley R., 2016. Chinchilla lanigera (errata version published in 2017). The IUCN Red List of Threatened Species 2016, e.T4652A117975205, https://dx.doi.org/10.2305/IUC...
 
28.
Saga, 2019. Saga sorting machine upgrade saves energy and time while putting values into action. https://www.sagafurs.com/susta...
 
29.
SAS, 2014. SAS/STAT 13.2 User’s Guide. SAS Institute Inc. Cary, NC (USA)
 
30.
Schallreuter K.U., Kothari S., Chavan B., Spencer J.D., 2008. Regulation of melanogenesis--controversies and new concepts. Exp. Dermatol. 17, 395–404, https://doi.org/10.1111/j.1600...
 
31.
Shekar S.N., Duffy D.L., Frudakis T., Montgomery G.W., James M.R., Sturm R.A., Martin N.G., 2008. Spectrophotometric methods for quantifying pigmentation in human hair-influence of MC1R genotype and environment. Photochem. Photobiol. 84, 719–726, https://doi.org/10.1111/j.1751...
 
32.
Simon J.D., Peles D., Wakamatsu K., Ito S., 2009. Current challenges in understanding melanogenesis: bridging chemistry, biological control, morphology, and function. Pigment Cell Melanoma Res. 22, 563–579, https://doi.org/10.1111/j.1755...
 
33.
Spotorno A.E., Zuleta C.A., Valladares J.P., Deane A.L., Jimenez J.E., 2004. Chinchilla laniger. Mamm. Species 758, 1–9, https://doi.org/10.1644/758
 
34.
Trut L.N., 1999. Early canid domestication: the farm-fox experiment. Am. Sci. 87, 160–169
 
35.
Videira I.F.D.S., Moura D.F.L., Magina S. 2013. Mechanisms regulating melanogenesis. An. Bras. Dermatol. 88, 76–83, https://doi.org/10.1590/S0365-...
 
36.
Wasmeier C., Hume A.N., Bolasco G., Seabra M.C., 2008. Melanosomes at a glance. J. Cell Sci. 121, 3995–3999, https://doi.org/10.1242/jcs.04...
 
37.
Watson A., Le Verger L., Guiot A., Feugier A., Biourge V., 2017. Nutritional components can influence hair coat colouration in white dogs. J. Appl. Anim. Nutr. 5, e5, https://doi.org/10.1017/jan.20...
 
38.
Watson A., Servet E., Hervera M., Biourge V.C., 2015. Tyrosine supplementation and hair coat pigmentation in puppies with black coats – a pilot study. J. Appl. Anim. Nutr. 3, e10, https://doi.org/10.1017/jan.20...
 
39.
Yu S., Rogers Q.R., Morris J.G., 2001. Effect of low levels of dietary tyrosine on the hair colour of cats. J. Small Anim. Pract. 42, 176–180, https://doi.org/10.1111/j.1748...
 
ISSN:1230-1388
Journals System - logo
Scroll to top