ORIGINAL PAPER
Effects of Entodinium caudatum monocultures in an acidotic
environment on in vitro rumen fermentation
More details
Hide details
1
Selcuk University, Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases, 42100 Konya, Turkey
Publication date: 2022-09-30
Corresponding author
M. S. Alatas
Department of Animal Nutrition and Nutritional Disorders, Faculty of Veterinary Medicine, Selcuk University, Konya 42100, Turkey
J. Anim. Feed Sci. 2022;31(4):379-383
KEYWORDS
TOPICS
ABSTRACT
The study evaluated the effect of Entodinium caudatum on the
prevention of subacute ruminal acidosis (SARA) in vitro. Different proportions of
wheat and corn [100% wheat (W); 75% wheat and 25% corn (W75); 50% wheat
and 50% corn (WC); 75% corn and 25% wheat (C75); and 100% corn (C)] were
used to create an in vitro acidotic environment. The activity of E. caudatum was
determined by adding defaunated rumen fluid and protozoan monocultures to
the substrates. The effect of E. caudatum monoculture on pH was insignificant,
while a significant influence of grain type was observed on ammonia (NH3-N)
formation. E. caudatum inoculation decreased lactic acid concentration
throughout the incubation period and shortened the fermentation start time (lag
time). The specific fermentation rate (SFR), which increased with the wheat ratio,
was reduced by E. caudatum culture. The total gas production varied depending
on the substrate and was increased by E. caudatum. Protozoan monoculture
decreased propionic acid levels, while it increased methane production. As
a result, E. caudatum stimulated earlier fermentation, but decreased lactic acid
production by reducing SFR. It is believed that the instantenuous phagocytosis
of E. caudatum (iodophilic storage) to digest starch particles prevents rapid
bacterial fermentation in the rumen fluid, and thus limit lactic acid production.
The results of this work may support future in vitro studies requiring E. caudatum
monoculture, as well as in vivo studies investigating the effect of E. caudatum on
the inhibition of SARA formation.
FUNDING
This project was funded by the Selcuk University
Scientific Research Projects Coordination Unit
(No: 14401042).
CONFLICT OF INTEREST
The Authors declare that there is no conflict of
interest.
METADATA IN OTHER LANGUAGES:
Chinese
酸性环境中单独培养尖尾内旋纤毛虫对瘤胃体外发酵的影响
关键词: 尖尾内旋纤毛虫;体外酸性环境;原生生物;亚急性瘤胃酸中毒
摘要: 本研究采用体外实验评价了尖尾内旋纤毛虫(Entodinium caudatum,E. caudatum)对亚急性瘤胃酸中毒
(Subacute ruminal acidosis,SARA)的预防作用。使用不同比例的小麦和玉米【100%小麦(W);75%小麦 +
25%玉米(W75);50%小麦 + 50%玉米(WC);25%小麦 + 75%玉米(C75);100%玉米(C)】来建立体外
酸性环境。通过向底物中添加灭虫瘤胃液和原生动物单独培养基来测定E. caudatum的活性。E. caudatum单独
培养对pH值的影响不显著,而谷物类型对氨氮(NH3-N)的形成有显著影响。接种E. caudatum降低了整个培
养过程中的乳酸浓度,缩短了发酵开始时间(滞后时间)。E. caudatum的特定发酵速率(specific fermentation
rate,SFR)随小麦比例的增加而降低。不同底物的总产气量不同,E. caudatum对总产气量有促进作用。原
生生物的单一培养降低了丙酸水平,同时增加了甲烷产量。结果表明,E. caudatum能通过降低SFR而提前发
酵,但降低了乳酸产量。普遍认为E. caudatum(嗜碘的贮存)对淀粉颗粒的瞬时吞噬作用阻止了瘤胃液中细
菌的快速发酵,从而限制了乳酸的产生。该结果可能支持未来需要E. caudatum单一培养的体外研究,以及研
究E. caudatum对抑制SARA形成的影响的体内研究。
REFERENCES (57)
1.
AOAC International, 2005. Official Methods of Analysis of AOAC International. 18th Edition. Gaithersburg, MD (USA)
2.
Bełżecki G., Miltko R., Michałowski T., 2012. The influence of single species populations of ciliates and multispecies fauna on pool size and outflow of microbial matter from the reticulo-rumen of sheep. J. Anim. Feed Sci. 21, 624–634,
https://doi.org/10.22358/jafs/...
3.
Blümmel M., Aiple K.-P., Steingass H., Becker K., 1999. A note on the stoichiometrical relationship of short chain fatty acid production and gas formation in vitro in feedstuffs of widely differing quality. J. Anim. Physiol. Anim. Nutr. 81, 157–167,
https://doi.org/10.1046/j.1439...
4.
Brossard L., Martin C., Chaucheyras-Durand F., Michalet-Doreau B., 2004. Protozoa involved in butyric rather than lactic fermentative pattern during latent acidosis in sheep. Reprod. Nutr. Dev. 44, 195–206,
https://doi.org/10.1051/rnd:20...
5.
Brown M.S., Ponce C.H., Pulikanti R. 2006. Adaptation of beef cattle to high-concentrate diets: performance and ruminal metabolism. J. Anim. Sci. 84, E25–E33,
https://doi.org/10.2527/2006.8...
6.
Cobellis G., Acuti G., Forte C., Menghini L., De Vincenzi S., Orrù M., Valiani A., Pacetti M., Trabalza-Marinucci M., 2015. Use of Rosmarinus officinalis in sheep diet formulations: Effects on ruminal fermentation, microbial numbers and in situ degradability. Small Rumin. Res. 126, 10–18,
https://doi.org/10.1016/j.smal...
7.
Coleman G.S., Laurie J.I., Bailey J.E., Holdgate S.A., 1976. The cultivation of cellulolytic protozoa isolated from the rumen. J. Gen. Microbiol. 95, 144–150,
https://doi.org/10.1099/002212...
8.
Dehority B.A., 1984. Evaluation of subsampling and fixation procedures used for counting rumen protozoa. Appl. Environ. Microbiol. 48, 182–185,
https://doi.org/10.1128/aem.48...
9.
Dehority B.A., 1998. Generation times of Epidinium caudatum and Entodinium caudatum, determined in vitro by transferring at various time intervals. J. Anim. Sci. 76, 1189–1196,
https://doi.org/10.2527/1998.7...
10.
Dehority B.A., 2005. Effect of pH on viability of Entodinium caudatum, Entodinium exiguum, Epidinium caudatum, and Ophryoscolex purkynjei in vitro. J. Eukaryot. Microbiol. 52, 339–342,
https://doi.org/10.1111/j.1550...
11.
Elghandour M.M.Y., Khusro A., Adegbeye M.J., Tan Z., Abu Hafsa S.H., Greiner R., Ugbogu E.A., Anele U.Y., Salem A.Z.M., 2020. Dynamic role of single-celled fungi in ruminal microbial ecology and activities. J. Appl. Microbiol. 128, 950–965,
https://doi.org/10.1111/jam.14...
12.
Ellis J.E., Lindmark D.G., Williams A.G., Lloyd D., 1994. Polypeptides of hydrogenosome-enriched fractions from rumen ciliate protozoa and trichomonads: immunological studies. FEMS Microbiol. Lett. 117, 211–216,
https://doi.org/10.1111/j.1574...
13.
Enemark J.M.D., Jorgensen R.J., Enemark P.S., 2002. Rumen acidosis with special emphasis on diagnostic aspects of subclinical rumen acidosis: a review. Vet. ir Zootech. 20, 16–29
14.
Eugène M., Archimède H., Sauvant D., 2004. Quantitative meta-analysis on the effects of defaunation of the rumen on growth, intake and digestion in ruminants. Livest. Prod. Sci. 85, 81–97,
https://doi.org/10.1016/S0301-...
15.
Firkins J.L., Yu Z., Park T., Plank J.E., 2020. Extending Burk Dehority's perspectives on the role of ciliate protozoa in the rumen. Front. Microbiol. 11, 123,
https://doi.org/10.3389/fmicb....
17.
Goad D.W., Goad C.L., Nagaraja T.G., 1998. Ruminal microbial and fermentative changes associated with experimentally induced subacute acidosis in steers. J. Anim. Sci. 76, 234–241,
https://doi.org/10.2527/1998.7...
18.
Goering H.K., Van Soest P.J., 1970. Forage fiber analyses (apparatus, reagents, procedures, and some applications). Agriculture Handbook 379. Agricultural Research Service, USDA. Washington, DC (USA), pp. 387–598
19.
Gülşen N., Arık H.D., Alataş M.S., Tahir M.N., 2018. Effects of Entodinium caudatum monoculture inoculation on in vitro fermentation, methane production and prevention of sub-acute ruminal acidosis. Pak. J. Sci. 70, 212–219
20.
Hook S.E., Steele M.A., Northwood K.S., Wright A.-D.G., McBride B.W., 2011. Impact of high-concentrate feeding and low ruminal pH on methanogens and protozoa in the rumen of dairy cows. Microb. Ecol. 62, 94–105,
https://doi.org/10.1007/s00248...
21.
Johnston J.D., Tricarico J.M., 2007. Practical implications of fiber in dairy rations: making use of forage fiber. 22nd Annual Southwest Nutrition & Management Conference. Feb. 22–23. Tempe, AZ (USA)
22.
Kang H., Lee M., Jeon S., Lee S.M., Lee J.H., Seo S., 2021. Effect of flaking on the digestibility of corn in ruminants. J. Anim. Sci. Technol. 63, 1018–1033,
https://doi.org/10.5187/jast.2...
23.
Kim Y.H., Nagata R., Ohkubo A., Ohtani N., Kushibiki S., Ichijo T., Sato S., 2018. Changes in ruminal and reticular pH and bacterial communities in Holstein cattle fed a high-grain diet. BMC Vet. Res. 14, 310,
https://doi.org/10.1186/s12917...
24.
Krause K.M., Oetzel G.R., 2006. Understanding and preventing subacute ruminal acidosis in dairy herds: a review. Anim. Feed Sci. Technol. 126, 215–236,
https://doi.org/10.1016/j.anif...
25.
Liu J.H., Bian G.R., Zhu W.Y., Mao S.Y., 2015. High-grain feeding causes strong shifts in ruminal epithelial bacterial community and expression of Toll-like receptor genes in goats. Front. Microbiol. 6, 167,
https://doi.org/10.3389/fmicb....
27.
López S., Dhanoa M.S., Dijkstra J.A., Bannink A., Kebreab E., France J., 2007. Some methodological and analytical considerations regarding application of the gas production technique. Anim. Feed Sci. Technol. 135, 139–156,
https://doi.org/10.1016/j.anif...
28.
Malmuthuge N., Guan L.L., 2017. Understanding host-microbial interactions in rumen: searching the best opportunity for microbiota manipulation. J. Anim. Sci. Biotechnol. 8, 8,
https://doi.org/10.1186/s40104...
29.
McCaughern J.H., Mackenzie A.M., Sinclair L.A., 2020. Dietary starch concentration alters reticular pH, hepatic copper concentration, and performance in lactating Holstein-Friesian dairy cows receiving added dietary sulfur and molybdenum. J. Dairy Sci. 103, 9024–9036,
https://doi.org/10.3168/jds.20...
30.
Mendoza G.D., Britton R.A., Stock R.A., 1993. Influence of ruminal protozoa on site and extent of starch digestion and ruminal fermentation. J. Anim. Sci. 71, 1572–1578,
https://doi.org/10.2527/1993.7...
31.
Menke K.H., Raab L., Salewski A., Steingass H., Fritz D., Schneider W., 1979. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. 93, 217–222,
https://doi.org/10.1017/S00218...
32.
Menke K.H., Steingass H., 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28, 7–55
33.
Moate P.J., Williams S.R.O., Deighton M.H., Hannah M.C., Ribaux B.E., Morris G.L., Jacobs J.L., Hill J., Wales W.J., 2018. Effects of feeding wheat or corn and of rumen fistulation on milk production and methane emissions of dairy cows. Anim. Prod. Sci. 59, 891–905,
https://doi.org/10.1071/AN1743...
35.
Moss A.R., Jouany J.-P., Newbold J., 2000. Methane production by ruminants: its contribution to global warming. Ann. Zootech. 49, 231–253,
https://doi.org/10.1051/animre...
36.
Nagaraja T.G., Titgemeyer E.C., 2007. Ruminal acidosis in beef cattle: the current microbiological and nutritional outlook. J. Dairy Sci. 90, E17–E38,
https://doi.org/10.3168/jds.20...
37.
Nordlund K.V., Garrett E.F., 1994. Rumenocentesis: a technique for collecting rumen fluid for the diagnosis of subacute rumen acidosis in dairy herds. Bov. Pract. 28, 109–112,
https://doi.org/10.21423/bovin...
38.
Nsabimana E., Kisidayová S., Macheboeuf D., Newbold C.J., Jouany J.P., 2003. Two-step freezing procedure for cryopreservation of rumen ciliates, an effective tool for creation of a frozen rumen protozoa bank. Appl. Environ. Microbiol. 69, 3826–3832,
https://doi.org/10.1128/AEM.69...
39.
NRC (National Research Council), 2001. Nutrient Requirements of Dairy Cattle. 7th Revised Edition. National Academy Press. Washington, DC (USA),
https://doi.org/10.17226/9825
40.
Odle J., Schaefer D.M., 1987. Influence of rumen ammonia concentration on the rumen degradation rates of barley and maize. Br. J. Nutr. 57, 127–138,
https://doi.org/10.1079/bjn198...
41.
Park T., Yu Z., 2018a. Aerobic cultivation of anaerobic rumen protozoa, Entodinium caudatum and Epidinium caudatum. J. Microbiol. Methods 152, 186–193,
https://doi.org/10.1016/j.mime...
43.
Park T., Yang C., Yu Z., 2019. Specific inhibitors of lysozyme and peptidases inhibit the growth of the rumen protozoan Entodinium caudatum without decreasing feed digestion or fermentation in vitro. J. Appl. Microbiol. 127, 670–682,
https://doi.org/10.1111/jam.14...
44.
Park T., Wijeratne S., Meulia T., Firkins J.L., Yu Z., 2021. The macronuclear genome of anaerobic ciliate Entodinium caudatum reveals its biological features adapted to the distinct rumen environment. Genomics 113, 1416–1427,
https://doi.org/10.1016/j.ygen...
45.
Patra A., Park T., Kim M., Yu Z., 2017. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J. Anim. Sci. Biotechnol. 8, 13,
https://doi.org/10.1186/s40104...
46.
Pei C.-X., Mao S.-Y., Cheng Y.-F., Zhu W.-Y., 2010. Diversity, abundance and novel 16S rRNA gene sequences of methanogens in rumen liquid, solid and epithelium fractions of Jinnan cattle. Animal 4, 20–29,
https://doi.org/10.1017/S17517...
47.
Qin W.Z., Li C.Y., Kim J.K., Ju J.G., Song M.K., 2012. Effects of defaunation on fermentation characteristics and methane production by rumen microbes in vitro when incubated with starchy feed sources. Asian-Australas. J. Anim. Sci. 25, 1381–1388,
https://doi.org/10.5713/ajas.2...
48.
Rabaza A., Banchero G., Cajarville C., Zunino P., Britos A., Repetto J.L., Fraga M., 2020. Effects of feed withdrawal duration on animal behaviour, rumen microbiota and blood chemistry in feedlot cattle: implications for rumen acidosis. Animal 14, 66–77,
https://doi.org/10.1017/S17517...
50.
Steele M.A., AlZahal O., Hook S.E., Croom J., McBride B.W., 2009. Ruminal acidosis and the rapid onset of ruminal parakeratosis in a mature dairy cow: a case report. Acta Vet. Scand. 51, 39,
https://doi.org/10.1186/1751-0...
51.
Sung H.G., Bae H.D., Lee J.H., Kim D.K., Shin H.T., 2004. Application of LDH enzyme and viable LDH-producing bacteria to prevent lactate accumulation during in vitro rumen fermentation. Anim. Feed Sci. Technol. 117, 235–243,
https://doi.org/10.1016/j.anif...
53.
Williams A.G., Coleman G.S., 1997. The rumen protozoa. In: P.N. Hobson, C.S. Stewart (Editors). The Rumen Microbial Ecosystem. 2nd Edition. Blackie Academic & Professional. London (UK), pp. 73–139
54.
Xia Y., Kong Y.H., Seviour R., Forster R.J., Kisidayova S., McAllister T.A., 2014. Fluorescence in situ hybridization probing of protozoal Entodinium spp. and their methanogenic colonizers in the rumen of cattle fed alfalfa hay or triticale straw. J. Appl. Microbiol. 116, 14–22,
https://doi.org/10.1111/jam.12...
55.
Yuste S., Amanzougarene Z., de la Fuente G., de Vega A., Fondevila M., 2019. Rumen protozoal dynamics during the transition from milk/grass to high-concentrate based diet in beef calves as affected by the addition of tannins or medium-chain fatty acids. Anim. Feed Sci. Technol. 257, 114273,
https://doi.org/10.1016/j.anif...
56.
Zeitz J.O., Kreuzer M., Soliva C.R., 2013. In vitro methane formation and carbohydrate fermentation by rumen microbes as influenced by selected rumen ciliate species. Eur. J. Protistol. 49, 389–399,
https://doi.org/10.1016/j.ejop...
57.
Zhang Y., Gao W., Meng Q., 2007. Fermentation of plant cell walls by ruminal bacteria, protozoa and fungi and their interaction with fibre particle size. Arch. Anim. Nutr. 61, 114–125,
https://doi.org/10.1080/174503...
CITATIONS (1):
1.
Multi-omics analyses reveal rumen microbes and secondary metabolites that are unique to livestock species
Victor O. Omondi, Geoffrey O. Bosire, John M. Onyari, Caleb Kibet, Samuel Mwasya, Vanessa N. Onyonyi, Merid N. Getahun, James R. Brown
mSystems