ORIGINAL PAPER
Effects of maternal vitamin D3 concentration during pregnancy on adipogenic genes expression and serum biochemical index in offspring piglets
More details
Hide details
1
Sumy National Agrarian University, Faculty of Food Technology, H. Kondratieva st, 40021, Sumy, Ukraine
2
Henan Institute of Science and Technology, School of Food Science and Technology, Eastern HuaLan Avenue 453003, Xinxiang, China
3
Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Eastern HuaLan Avenue 453003, Xinxiang, China
Publication date: 2020-06-30
Corresponding author
S. Melnychuk
Sumy National Agrarian University, Faculty of Food Technology, H. Kondratieva st, 40021, Sumy, Ukraine
J. Anim. Feed Sci. 2020;29(2):125-131
KEYWORDS
TOPICS
ABSTRACT
The aim of the present study was to investigate the effects of
different vitamin D3 concentrations in sows during pregnancy on adipogenic
genes expression in musculus longissimus dorsi tissue and serum biochemical
parameters in their piglets. In total 27 pregnant sows (41st day of pregnancy)
were randomly divided into low vitamin D3 (LD), normal vitamin D3 (ND) and
high vitamin D3 (HD) groups with 9 sows in each, and maintained on these
diets throughout pregnancy till giving birth. Animals in LD, ND and HD groups
were fed 200, 800 and 3200 IU of vitamin D3/kg basal diet, respectively. From
parturition to weaning (28 days of piglet life), all lactating sows were fed ND
diet. At 28-day of life, 6 offspring pigs with similar body weight in each group
(2 offspring pigs per replicate, sex balance) were weighed and slaughtered to
investigate adipogenic genes expression and serum biochemical index. It was
shown that piglets born in LD group had higher PPARG expression, serum
IGF-I, FT3 and FT4 concentrations, while lower VDR and ZFP423 expressions,
serum leptin, 25(OH)D and insulin levels than those born in ND and HD groups
(P < 0.05). Meanwhile, FAS expression and FAS/HSL ratio in piglets born
in HD group were higher than in those born in LD and ND groups (P < 0.05).
So, it is suggested that maternal vitamin D3 concentration influenced adipocyte
commitment and differentiation of musculus longissimus dorsi in piglets by altering
adipogenic genes expression and serum biochemical parameters concentration.
FUNDING
This work was supported by grants from the
Henan joint funds of National Natural Science
Foundation of China (U1604102), the National
Natural Science Foundation of China (31572417),
and Provincial key Technology Research and
development program of Henan (192102110069).
REFERENCES (30)
1.
Belenchia A.M., Jones K.L., Will M., Beversdorf D.Q., Vieira-Potter V., Rosenfeld C.S., Peterson C.A., 2018. Maternal vitamin D deficiency during pregnancy affects expression of adipogenic-regulating genes peroxisome proliferator-activated receptor gamma (PPARgamma) and vitamin D receptor (VDR) in lean male mice offspring. Eur. J. Nutr. 57, 723−730,
https://doi.org/10.1007/s00394....
2.
Chango A., Pogribny I.P., 2015. Considering maternal dietary modulators for epigenetic regulation and programming of the fetal epigenome. Nutrients 7, 2748−2770,
https://doi.org/10.3390/nu7042....
4.
Du M., Tong J., Zhao J., Underwood K.R., Zhu M., Ford S.P., Nathanielsz P.W., 2010. Fetal programming of skeletal muscle development in ruminant animals. J. Anim. Sci. 88, E51−E60,
https://doi.org/10.2527/jas.20....
6.
Flohr J.R., Tokach M.D., Dritz S.S., DeRouchey J.M., Goodband R.D., Nelssen J.L., Bergstrom J.R., 2014. An evaluation of the effects of added vitamin D3 in maternal diets on sow and pig performance. J. Anim. Sci. 92, 594−603,
https://doi.org/10.2527/jas.20....
7.
Flohr J.R., Woodworth J.C., Bergstrom J.R., Tokach M.D., Dritz S.S., Goodband R.D., DeRouchey J.M., 2016. Evaluating the impact of maternal vitamin D supplementation on sow performance: II. Subsequent growth performance and carcass characteristics of growing pigs. J. Anim. Sci. 94, 4643−4653,
https://doi.org/10.2527/jas.20....
8.
Gupta R.K., Arany Z., Seale P., Mepani R.J., Ye L., Conroe H.M., Roby Y.A., Kulaga H., Reed R.R., Spiegelman B.M., 2010. Transcriptional control of preadipocyte determination by Zfp423. Nature 464, 619−623,
https://doi.org/10.1038/nature....
10.
Harris C.L., Wang B., Deavila J.M., Busboom J.R., Maquivar M., Parish S.M., McCann B., Nelson M.L., Du M., 2018. Vitamin A administration at birth promotes calf growth and intramuscular fat development in Angus beef cattle. J. Anim. Sci. Biotechnol. 9, 55,
https://doi.org/10.1186/s40104....
11.
Hausman G.J., Dodson M.V., Ajuwon K. et al., 2009. Board-invited review: the biology and regulation of preadipocytes and adipocytes in meat animals. J. Anim. Sci. 87, 1218−1246,
https://doi.org/10.2527/jas.20....
13.
Jakobsen J., Maribo H., Bysted A., Sommer H.M., Hels O., 2007. 25-hydroxyvitamin D3 affects vitamin D status similar to vitamin D3 in pigs - but the meat produced has a lower content of vitamin D. Br. J. Nutr. 98, 908−913,
https://doi.org/10.1017/S00071....
14.
Ji S., Doumit M.E., Hill R.A., 2015. Correction: Regulation of adipogenesis and key adipogenic gene expression by 1,25-dihydroxyvitamin D in 3T3-L1 cells. PLoS ONE 10, e0134199,
https://doi.org/10.1371/journa....
15.
Kong J., Li Y.C., 2006. Molecular mechanism of 1,25-dihydroxyvitamin D3 inhibition of adipogenesis in 3T3-L1 cells. Am. J. Physiol. Endocrinol. Metab. 290, E916−E924,
https://doi.org/10.1152/ajpend....
16.
Menendez C., Lage M., Peino R., Baldelli R., Concheiro P., Dieguez C., Casanueva F.F., 2001. Retinoic acid and vitamin D(3) powerfully inhibit in vitro leptin secretion by human adipose tissue. J. Endocrinol. 170, 425−431,
https://doi.org/10.1677/joe.0.....
17.
Miao Z.G., Wang L.J., Xu Z.R., Huang J.F., Wang Y.R., 2008. Developmental patterns in hormone and lipid metabolism of growing Jinhua and Landrace gilts. Can. J. Anim. Sci. 88, 601−607,
https://doi.org/10.4141/CJAS08....
18.
Miao Z.G., Wang L.J., Xu Z.R., Huang J.F., Wang Y.R., 2009. Developmental changes of carcass composition, meat quality and organs in the Jinhua pig and Landrace. Animal 3, 468−473,
https://doi.org/10.1017/S17517....
19.
Miao Z., Zhu F., Zhang H., Chang X., Xie H., Zhang J., Xu Z., 2010. Developmental patterns of FASN and LIPE mRNA expression in adipose tissue of growing Jinhua and Landrace gilts. Czech J. Anim. Sci. 55, 557−564,
https://doi.org/10.17221/2514-....
20.
NRC (National Research Council), 2012. Nutrient Requirements of Swine, 11th Revised Edition. The National Academies Press. Washington, DC (USA),
https://doi.org/10.17226/13298.
21.
Qiao Y., Huang Z., Li Q., Liu Z., Hao C., Shi G., Dai R., Xie Z., 2007. Developmental changes of the FAS and HSL mRNA expression and their effects on the content of intramuscular fat in Kazak and Xinjiang sheep. J. Genet. Genomics 34, 909−917,
https://doi.org/10.1016/S1673-....
22.
Salmeron C., Johansson M., Asaad M. et al., 2015. Roles of leptin and ghrelin in adipogenesis and lipid metabolism of rainbow trout adipocytes in vitro. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 188, 40−48,
https://doi.org/10.1016/j.cbpa....
23.
Tong J., Zhu M.J., Underwood K.R., Hess B.W., Ford S.P., Du M., 2008. AMP-activated protein kinase and adipogenesis in sheep fetal skeletal muscle and 3T3-L1 cells. J. Anim. Sci. 86, 1296−1305,
https://doi.org/10.2527/jas.20....
24.
Uhlirova L., Tumova E., Chodova D., Vlckova J., Ketta M., Volek Z., Skrivanova V., 2018. The effect of age, genotype and sex on carcass traits, meat quality and sensory attributes of geese. Asian-Austral. J. Anim. Sci. 31, 421−428,
https://doi.org/10.5713/ajas.1....
25.
Vu D., Ong J. M., Clemens T. L., Kern P. A., 1996. 1,25-Dihydroxyvitamin D induces lipoprotein lipase expression in 3T3-L1 cells in association with adipocyte differentiation. Endocrinology 137, 1540−1544,
https://doi.org/10.1210/endo.1....
26.
Wallace A.M., Gibson S., de la Hunty A., Lamberg-Allardt C., Ashwell M., 2010. Measurement of 25-hydroxyvitamin D in the clinical laboratory: current procedures, performance characteristics and limitations. Steroids 75, 477−488,
https://doi.org/10.1016/j.ster....
27.
Wang B., Fu X., Liang X. et al., 2017. Maternal retinoids increase PDGFRalpha(+) progenitor population and beige adipogenesis in progeny by stimulating vascular development. EBioMedicine 18, 288−299,
https://doi.org/10.1016/j.ebio....
28.
Wang B., Yang Q., Harris C.L., Nelson M.L., Busboom J.R., Zhu M.J., Du M., 2016. Nutrigenomic regulation of adipose tissue development - role of retinoic acid: A review. Meat. Sci. 120, 100−106,
https://doi.org/10.1016/j.meat....
29.
Wen J., Hong Q., Wang X. et al., 2018. The effect of maternal vitamin D deficiency during pregnancy on body fat and adipogenesis in rat offspring. Sci. Rep. 8, 365,
https://doi.org/10.1038/s41598....
30.
Zhuang H., Lin Y., Yang G., 2007. Effects of 1,25-dihydroxyvitamin D3 on proliferation and differentiation of porcine preadipocyte in vitro. Chem. Biol. Interact. 170, 114−123,
https://doi.org/10.1016/j.cbi.....
CITATIONS (5):
1.
Effects of maternal vitamin D3 status on quality traits of longissimus dorsi muscle in offspring pigs during postmortem storage
Liping Guo, Zhiguo Miao, Hanjun Ma, Sergiy Melnychuk
Livestock Science
2.
Effects of maternal vitamin D
3 on quality and water distribution in pork of offspring pigs during frozen storage
L. Guo, Z. Miao, S. Melnychuk, H. Ma
Journal of Animal and Feed Sciences
3.
Effects of maternal vitamin D
3 status on meat quality
and fatty acids composition in offspring pigs
L. Guo, Z. Miao, H. Ma, M. Sergiy
Journal of Animal and Feed Sciences
4.
Effects of maternal vitamin D3 status on quality characteristics of pork batters in offspring pigs during cold storage
Suli WANG, Liping GUO, Zhiguo MIAO, Hanjun MA, Sergiy MELNYCHUK
Food Science and Technology
5.
EFFECTS OF MATERNAL VITAMIN D3 LEVELS DURING PREGNANCY ON PORK QUALITY CHARACTERISTICS OF OFFSPRING PIGS
Liping Guo, Suli Wang, Sergiy Melnychuk, Hanjun Ma
Food Science and Technology