ORIGINAL PAPER
Effects on in vitro digestibility and rumen fermentation of maize
straw silage as a partial dietary replacement for Napier grass
More details
Hide details
1
National Research and Innovation Agency (BRIN), Research Organization for Agriculture and Food, Research Centre for Animal Husbandry, Bogor District, 16915, West Java, Indonesia
2
Agricultural Instruments Standardization Agency, Centre for Instruments Standardization of Livestock and Animal Health,
Indonesian Instruments Standardization Testing Station for Small Ruminants, Deli Serdang, 20585, North Sumatra, Indonesia
Publication date: 2023-07-31
Corresponding author
G. E. Tresia
National Research and Innovation Agency (BRIN), Research Organization for Agriculture and Food, Research Centre for Animal Husbandry, Bogor District, 16915, West Java, Indonesia
J. Anim. Feed Sci. 2024;33(1):119-127
KEYWORDS
TOPICS
ABSTRACT
Maize straw is an agricultural by-product that has the potential
to be used as an alternative feed for ruminants. In order to utilise this crop
residue rationally, their nutritional value should be improved to promote their use
as silage. This study aimed to evaluate in vitro fermentability and digestibility
of maize by-product silage in ruminant feed rations based on Indigofera
zollingeriana as a substitute for Napier grass (NG). A completely randomised
design with 3 treatments and 8 replications was applied. The proportion of
forage and concentrate in rations was 45:55% on a dry matter (DM) basis.
The experimental treatments included a ration containing 35% NG (R0),
a ration containing 17.5% NG and 17.5% maize straw silage (MSS) (R1), and
lastly a ration containing 35% MSS (R2). The results showed that increasing
the levels of maize straw silage in rations reduced in vitro digestibility including
DM and organic digestibility, ammonia (NH3), total and proportional volatile
fatty acid (VFA) contents, gas production, and the total protozoan and bacterial
populations (P < 0.01). However, the numerical rumen pH values (6.45–6.71),
VFA levels (69.08–89.23 mM), NH3 concentrations (10.50–12.88 mM), and
gas production (185.46–193.33 ml/g DM) were within the normal range for
ruminant requirements in terms of gas production and in vitro feed fermentation
in the rumen. There was no significant difference found in methane production
(P > 0.05). Considering rumen fermentation products and pH ruminal condition,
it can be concluded that maize straw silage up to 50% can be used as a feed
substitute in ruminant rations.
FUNDING
The authors would like to express their gratitude
for the financial support provided by the Indonesian
Center of Animal Research and Development, Indonesian
Agency for Agriculture Research and Development,
Ministry of Agricultural under the ‘Collaborative
and Innovative Research Program’ in the
fiscal year 2021.
CONFLICT OF INTEREST
The Authors declare that there is no conflict of
interest.
REFERENCES (45)
1.
Ali M., van Duinkerken G., Cone J.W., Klop A., Blok M.C., Spek J.W., Bruinenberg M.H., Hendriks W.H., 2014. Relationship between chemical composition and in situ rumen degradation characteristics of maize silages in dairy cows. Animal 8, 1832–1838,
https://doi.org/10.1017/S17517....
2.
Allen M.S., 1997. Relationship between fermentation acid production in the rumen and the requirement for physically effective fiber. J. Dairy Sci. 80, 1447–1462,
https://doi.org/10.3168/jds.S0....
3.
Antari R., Anggraeny Y.N., Putri A.S., Sukmasari P.K., Krishna N.H., Mariyono M., Aprilliza M.N., Ginting S., 2022. Nutritive and antinutritive contents of Indigofera zollingeriana: Its potency for cattle feed in Indonesia. Livest. Res. Rural. Dev. 34, 2,
https://www.lrrd.org/lrrd34/2/....
4.
AOAC. 2005. Official Methods of Analysis. 15th Edition. Association of Official Analytical Chemist, Washington DC.
5.
Arief A., Rusdimansyah R., Sowmen S., Pazla R., Rizqan R.., 2020. Milk production and quality of Etawa crossbreed dairy goat that given Tithonia diversifolia, maize waste and concentrate based palm kernel cake. Biodiversitas 21, 4004–4009,
https://doi.org/10.13057/biodi....
6.
Brandao V.L.N., Faciola A.P., 2019. Unveiling the relationships between diet composition and fermentation parameters response in dual-flow continuous culture system: a meta-analytical approach. Transl. Anim. Sci. 3, 1064–1075,
https://doi.org/10.1093/tas/tx....
7.
Chen L., Dong Z., Li J., Shao T., 2019. Ensiling characteristics, in vitro rumen fermentation, microbial communities and aerobic stability of low-dry matter silages produced with sweet sorghum and alfalfa mixtures. J. Sci. Food Agric. 99, 2140–2151,
https://doi.org/10.1002/jsfa.9....
8.
Chen L., Ren A., Zhou C., Tan Z., 2017. Effects of Lactobacillus acidophilus supplementation for improving in vitro rumen fermentation characteristics of cereal straws. Ital. J. Anim. Sci. 16, 52–60,
https://doi.org/10.1080/182805....
9.
Cherney D.J.R., 2000. Characterization of forages by chemical analysis. In: Forage evaluation in ruminant nutrition UK: CABI Publishing, pp. 281–300,
https://doi.org/10.1079/978085....
10.
Conway E.J., O’Malley E., 1942. Microdiffusion methods. Ammonia and urea using buffered absorbents (revised methods for ranges greater than 10μg. N). Biochem. J. 36,6 55–661,
https://doi.org/10.1042/bj0360....
11.
de Boever J.L., Goossens K., Peiren N., Swanckaert J., Ampe B., Reheul D., de Brabander D.L., de Campeneere S., Vandaele L., 2017. The effect of maize silage type on the performances and methane emission of dairy cattle. J. Anim. Physiol. Anim. Nutr. (Berl) 101, e246–e256,
https://doi.org/10.1111/jpn.12....
12.
Dong G., Qiu M., Ao C., Zhou J., Khas-Erdene, Wang X., Zhang Z., Yang Y., 2014. Feeding a high-concentrate corn straw diet induced epigenetic alterations in the mammary tissue of dairy cows. Andrews Z., editor. PLoS One 9, e107659,
https://doi.org/10.1371/journa....
13.
Gao J.L., Wang P., Zhou C.H., Li P., Tang H.Y., Zhang J.B., Cai Y., 2019. Chemical composition and in vitro digestibility of corn stover during field exposure and the fermentation characteristics of silage prepared with microbial additives. Asian-Australas J. Anim. Sci. 32, 1854–1863,
https://doi.org/10.5713/ajas.1....
14.
Goering H.K., van Soest P.J., 1970. Forage fiber analyses: Apparatus, reagent, procedures and some applications. USDA-ARS Agricultural Handbook 379. Washington DC (USA).
15.
Granja-Salcedo Y.T., Ribeiro Júnior C.S., de Jesus R.B., Gomez-Insuasti A.S., Rivera A.R., Messana J.D., Canesin R.C., Berchielli T.T., 2016. Effect of different levels of concentrate on ruminal microorganisms and rumen fermentation in Nellore steers. Arch. Anim. Nutr. 70, 17–32,
https://doi.org/10.1080/174503....
17.
Hartadi, H., Reksohadiprodjo, S., Lebdosukojo, S., Tillman, A. D., Kearl, L.C, Harris, L.E., 1980. Tables of Feed Composition for Indonesia-Nutritional Data. The International Feedstuffs Institute Utah Agricultural Experiment Station, Utah State University. Utah (USA).
18.
Kara K., 2019. The in vitro digestion of neutral detergent fibre and other ruminal fermentation parameters of some fibrous feedstuffs in Damascus goat (Capra aegagrus hircus). J. Anim. Feed Sci. 28, 159–168,
https://doi.org/10.22358/jafs/....
19.
Kim Y.H., Nagata R., Ohtani N., Ichijo T., Ikuta K., Sato S., 2016. Effects of dietary forage and calf starter diet on ruminal pH and bacteria in Holstein calves during weaning transition. Front Microbiol. 7, 1575,
https://doi.org/10.3389/fmicb.....
20.
Kung L., Shaver R.D., Grant R.J., Schmidt R.J. ,2018. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 10, 4020–4033,
https://doi.org/10.3168/jds.20....
21.
Kurniawan W., Bain A., Syamsuddin, Abadi M., Sandy Y.N., 2019. Quality and fermentation characteristic of corn stover - rubber cassava (Manihot glaziovii M.A) combination silage. IOP Conf. Ser. Earth Environ. Sci. 287, 012022,
https://doi.org/10.1088/1755-1....
22.
Indonesian National Standard, 1992. Methods for Analysing Food and Beverages (Cara Uji Makanan dan Minuman). SNI 01-2891-1992. National Standardization Agency of Indonesia. Jakarta (ID).
23.
Liu Q., Wang C., Pei C.X., Li H.Y., Wang Y.X., Zhang S.L., Zhang Y.L., He J.P, Wang H, Yang W.Z., et al., 2014. Effect of isovalerate supplementation on microbial status and rumen enzyme profile in steers fed on maize stover based diet. Livestock Sci. 161, 60–68,
http://dx.doi.org/10.1016/j.li....
24.
Liu D., Zhou X., Zhao P., Gao M., Han H., Hu H., 2013. Effects of Increasing Non-Fiber Carbohydrate to Neutral Detergent Fiber Ratio on Rumen Fermentation and Microbiota in Goats. J. Integr. Agric. 12 , 319–326,
https://doi.org/10.1016/S2095-....
25.
McDonald P., Edwards R.A., Greenhalgh J.F.D., Morgan C.A., Sinclair L.A., Wilkinson R.G., 2011. Animal Nutrition. 7th Edition. Prentice Hall/Pearson. Harlow (GB)
26.
Oginomoto K, Imai S. 1981. Atlas of Rumen Microbiology. Imai S, editor. Japan Scientific Societies Press. Madison (USA).
27.
Ørskov E.R., McDonald I., 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92, 499–503,
https://doi.org/10.1017/S00218....
29.
Qin C., Bu D., Sun P., Zhao X., Zhang P., Wang J., 2017. Effects of corn straw or mixed forage diet on rumen fermentation parameters of lactating cows using a wireless data logger. Anim. Sci. J. 88, 259–266,
https://doi.org/10.1111/asj.12....
31.
Ribeiro R.C.O., Villela S.D.J., Valadares F.S.C., Santos S.A., Ribeiro K.G., Detmann E., Zanetti D., Martins P.G.M.A., 2015. Effects of roughage sources produced in a tropical environment on forage intake, and ruminal and microbial parameters1. J. Anim. Sci. 93, 2363–2374,
https://doi.org/10.2527/jas.20....
32.
Salinas-Chavira J., Alvarez E., Montaño M.F., Zinn R.A., 2013. Influence of forage NDF level, source and pelletizing on growth performance, dietary energetics, and characteristics of digestive function for feedlot cattle. Anim. Feed Sci. Tech. 183, 106–115,
https://doi.org/10.1016/j.anif....
33.
Saro C., Ranilla M.J., Tejido M.L., Carroc, M.D., 2014. Influence of forage type in the diet of sheep on rumen microbiota and fermentation characteristics. Livest. Sci. 160, 52–59,
https://doi.org/10.1016/j.livs....
34.
Sato S., 2016. Pathophysiological evaluation of subacute ruminal acidosis (SARA) by continuous ruminal pH monitoring. Anim. Sci. J. 87, 168–77,
https://doi.org/10.1111/asj.12.... 6.
35.
Schwab C.G., Broderick G.A., 2017. A 100-Year Review: Protein and amino acid nutrition in dairy cows. J. Dairy Sci. 100, 10094–10112,
https://doi.org/10.3168/jds.20....
36.
Singh S., Kushwaha B.P., Nag S.K., Mishra A.K., Singh A., Anele U.Y., 2012. In vitro ruminal fermentation, protein and carbohydrate fractionation, methane production and prediction of twelve commonly used Indian green forages. Anim. Feed Sci. Technol. 178, 2–11,
https://doi.org/10.1016/j.anif....
37.
Steele, R.G.D.,Torrie, J.H., 1990. Principles and Procedures of Statistics. 2nd Edition, McGraw-Hill Book Co Inc. New York (USA).
38.
Theodorou M., Brooks A., 1990. Evaluation of A New Laboratory Procedure for Estimating the Fermentation Kinetics of Tropical Feeds. In: Annual Report. AFRC Inst. Hurley. Meidenhead (GB).
39.
Tian X., Gao C., Hou Z., Wang R., Zhang X., Li Q., Wei Z., Wu D., Wang M., 2022. Comparisons of ramie and corn stover silages: effects on chewing activity, rumen fermentation, microbiota and methane emissions in goats. Fermentation. 8, 432,
https://doi.org/10.3390/fermen....
40.
Trisnadewi A.A.A.S., Cakra I.G.L.O., 2020. Physical characteristics, nutritional qualities and in vitro digestibility of silage from various sources of fiber. Pak. J. Nutr. 19, 166–171,
https://doi.org/10.3923/pjn.20....
41.
van Soest P.J., Robertson J.B.., Lewis B.A., 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597,
https://doi.org/10.3168/jds.S0....
42.
van Zanten H.H.E., van Ittersum M.K., de Boer I.J.M., 2019. The role of farm animals in a circular food system. Glob. Food Sec. 21, 18–22,
https://doi.org/10.1016/j.gfs.....
43.
Wang M., Zhang F., Zhang X., Yun Y., Wang L., Yu Z., 2021. Nutritional quality and in vitro rumen fermentation characteristics of silage prepared with lucerne, sweet maize stalk, and their mixtures. Agriculture 11, 1205,
https://doi.org/10.3390/agricu....
44.
Zhang S.J., Chaudhry A.S., Osman A., Shi C.Q., Edwards G.R., Dewhurst R.J., Cheng L., 2015. Associative effects of ensiling mixtures of sweet sorghum and alfalfa on nutritive value, fermentation and methane characteristics. Anim. Feed Sci. Technol. 206, 29–38,
https://doi.org/10.1016/j.anif....
45.
Zhang Z., Zhao K., Yang S., Min. L., Tong X., Chen W., Li D., 2023. Analysis on fermentation quality, chemical composition and bacterial communities of corn straw and soybean straw mixed silage. Fermentation 9, 500,
https://doi.org/10.3390/fermen....
CITATIONS (1):
1.
Nutrient digestibility, characteristics of rumen fermentation, and microbial protein synthesis from Pesisir cattle diet containing non-fiber carbohydrate to rumen degradable protein ratio and sulfur supplement
Mardiati Zain, Ujang Hidayat Tanuwiria, Jasmal Ahmari Syamsu, Yunilas Yunilas, Roni Pazla, Ezi Masdia Putri, Malik Makmur, Ummi Amanah, Putri Okta Shafura, Bima Bagaskara
Veterinary World