ORIGINAL PAPER
Evaluation of feed supplementation using legume leaf meal and spent substrate fermented by Eupenicillium javanicum as a potential feed for ruminants: an in vitro study
More details
Hide details
1
National Research and Innovation Agency, Organization Research for Agriculture and Food, Research Center for Animal Husbandry, 16915 Bogor, Indonesia
Publication date: 2024-08-21
Corresponding author
A. Herliatika
National Research and Innovation Agency, Organization Research for Agriculture and Food, Research Center for Animal Husbandry, 16915 Bogor, Indonesia
KEYWORDS
TOPICS
ABSTRACT
Legume forage contains anti-nutrients that mitigate enteric methane production by reducing microbial activity in the rumen. Therefore, this study aimed to observe the inclusion of 49.6% legumes in concentrate, with or without Eupennicillum javanicum-fermented spent substrate supplementation on in vitro feed fermentation and methane emission. The experimental diet consisted of a legume-containing (L) or non-legume (NL) concentrate with (+S) or without (−S) spent substrate at 10% dry matter concentrate. This study used a complete randomised design in a 2 × 2 factorial arrangement with five replicates per treatment. The ratio of concentrate to forage was 1:3, with the legume component containing a mixture of Indigofera sp. and Gliricidia sp. at a ratio of 3:1. The results showed that Indigofera sp. and Gliricidia sp. could substitute 49.6% of the concentrate without affecting feed digestibility. Furthermore, the addition of Indigofera sp., Gliricidia sp., and spent substrate effectively reduced methane production in ruminants.
ACKNOWLEDGEMENTS
The authors are grateful to the Government of Indonesia for providing financial support for this project through the revenue and expenditure budget [2021], under Research Project Number: 4585.SDA.502/051/C/C2/APBN/2021.
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
REFERENCES (55)
1.
Adegun M.K., 2014. Voluntary feed intake and nutrient utilization of West African dwarf sheep fed supplements of Moringa oleifera and Gliricidia sepium fodders. Am. J. Agric. For. 2, 94–99,
https://doi.org/10.11648/j.aja....
2.
Akakpo D.B., De Boer I.J.M., Adjei-nsiah S., Duncan A.J., Giller K.E., Oosting S.J., 2020. Evaluating the effect of storage conditions on dry matter loss and nutritional quality of grain legume fodders in West Africa. Anim. Feed Sci. Technol. 262, 114419,
https://doi.org/10.1016/j.anif....
3.
AOAC, 1995. Official Methods of Analysis of AOAC International. 16th Edition. Association of Official Analytical Chemists. AOAC International. Arlington, TX (USA).
4.
Ariandi, Yopi, Meryandini A., 2015. Enzymatic hydrolysis of copra meal by mannanase from Streptomyces sp. BF3.1 for the production of mannooligosaccharides. HAYATI J. Biosci. 22, 79–86,
https://doi.org/10.4308/hjb.22....
5.
Aye P.A., Adegun M.K., 2013. Chemical composition and some functional properties of Moringa, Leucaena and Gliricidia leaf meals. ABJNA 4, 71–77,
https://doi.org/10.5251/abjna.....
6.
Aziz H.A., Nassar M.S., Badway H.S., Abd Elrahaman M.H., 2018. Rumen fermentations and rumen ciliate protozoa of goat kids fed diets with different concentrate: roughage ratio. Egypt. J. Nutr. Feeds. 21, 657–673,
https://doi.org/10.21608/ejnf.....
7.
Bhatta R., Saravanan M., Baruah L., Sampath K.T., Prasad C.S., 2013. Effect of plant secondary compounds on in vitro methane, ammonia production and ruminal protozoa population. J. Applied Microbiol. 115, 455–465,
https://doi.org/10.1111/jam.12....
8.
Bohatier J., 1991. The rumen protozoa: taxonomy, cytology and feeding behavior. In: J.P. Jouany (Editor). Rumen Microbial Metabolism and Ruminant Digestion. Institut National De La Recherche Agronomique. Paris (France).
9.
Chuntrakort P., Otsuka M., Hayashi K., Takenaka A., Udchachon S., Sommart K., 2014. The effect of dietary coconut kernels, whole cottonseeds and sunflower seeds on the intake, digestibility and enteric methane emissions of Zebu beef cattle fed rice straw based diets. Livest. Sci. 161, 80–89,
https://doi.org/10.1016/j.livs....
10.
Conway E.J., O’Malley E., 1942. Microdiffusion methods. Ammonia and urea using buffered absorbents (revised methods for ranges greater than 10 µg. N). Biochem J. 36, 655–661,
https://doi.org/10.1042/bj0360....
11.
Ding S., Oba M., Swift M.L., O’Donovan J.T., Edney M.J., McAllister T.A., Yang W.Z., 2015. In vitro gas production and dry matter digestibility of malting barley grain sown with different seeding and nitrogen fertilization rates in Canada. Anim. Feed Sci. Technol. 199, 146–151,
https://doi.org/10.1016/j.anif....
12.
Evelyn, Amraini S.Z., Pratiwi E.D., Ismala U.N., 2020. Production of cellulase and xylanase from Eupenicillium Javanicum by solid-state fermentation utilizing pineapple crown leaves waste as the substrate. J. Phys. Conf. Ser. 1655, 012113,
https://doi.org/10.1088/1742-6....
13.
Fadiyimu A.A., Alokan J.A., Fajemisin A.N., Onibi G.E., 2016. Feed intake, growth performance and carcass characteristics of West African dwarf sheep fed Moringa oleifera, Gliricidia sepium or cassava fodder as supplements to Panicum maximum. J. Exp. Agric. Int. 14, 1–10,
https://doi.org/10.9734/JEAI/2....
14.
Fievez V., Babayemi O.J., Demeyer D., 2005. Estimation of direct and indirect gas production in syringes: a tool to estimate short chain fatty acid production that requires minimal laboratory facilities. Anim. Feed Sci. Technol. 123–124, 197–210,
https://doi.org/10.1016/j.anif....
15.
Focant M., Froidmont E., Archambeau Q., Dang Van Q.C., Larondelle Y., 2019. The effect of oak tannin (Quercus robur) and hops (Humulus lupulus) on dietary nitrogen efficiency, methane emission, and milk fatty acid composition of dairy cows fed a low-protein diet including linseed. J. Dairy Sci. 102, 1144–1159,
https://doi.org/10.3168/jds.20....
16.
Gerometta E., Grondin I., Smadja J., Frederich M., Gauvin-Bialecki A., 2020. A review of traditional uses, phytochemistry and pharmacology of the genus Indigofera. J. Ethnopharmacol. 253, 112608,
https://doi.org/10.1016/j.jep.....
17.
Gunasekaran S., Bandeswaran C., Valli C., Gopi H., 2017. Effect of feeding Gliricidia sepium leaves from silvipasture model of agroforesty in degraded wastlands on milk yield and its composition in Milch Cows. Int. J. Curr. Microbiol. App. Sci. 6, 2420–2423,
https://doi.org/10.20546/ijcma....
18.
Guzatti G.C., Duchini P.G., Kozloski G.V., Niderkorn V., Ribeiro-Filho H.M.N., 2017. Associative effects between red clover and kikuyu grass silage: proteolysis reduction and synergy during in vitro organic matter degradation. Anim. Feed Sci. Technol. 231, 107– 110,
https://doi.org/10.1016/j.anif....
19.
Haryati T., Sinurat A.P., Hamid H., Purwadaria T., 2019. Optimization of BS4 enzyme production with different substrate thickness and type of trays. JITV 24, 158–165,
https://doi.org/10.14334/jitv.....
20.
Idan F., Adogla-Bessa T., Amaning-Kwarteng K., 2020. Preference, voluntary feed intake, and digestibility of sheep fed untreated rice straw and supplemented with sole or combined fodder tree leaves. European J. Agric. Food Sci. 2, 1–8,
https://doi.org/10.24018/ejfoo....
21.
Jayanegara A., Dewi S.P., Laylli N., Laconi E.B., Nahrowi, Ridla M., 2016. Determination of cell wall protein from selected feedstuffs and it’s relationship with ruminal protein digestibility in vitro. Media Peternakan. 39, 134–140,
https://doi.org/10.5398/medpet....
22.
Karimizadeh E., Chaji M., Mohammadabadi T., 2017. Effects of physical form of diet on nutrient digestibility, rumen fermentation, rumination, growth performance and protozoa population of finishing lambs. Anim. Nutr. 3, 139–144,
https://doi.org/10.1016/j.anin....
23.
Khuwijitjaru P., Watsanit K., Adachi S., 2012. Carbohydrate content and composition of product from subcritical water treatment of coconut meal. J. Ind. Eng. Chem. 18, 225–229,
https://doi.org/10.1016/j.jiec....
24.
Knapp J. R., Laur G.L., Vadas P.A., Weiss W.P., Tricarico J.M., 2014. Invited review: enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 97, 3231–3261,
https://doi.org/10.3168/jds.20....
25.
Larsen R.E., Jones G.M., 1973. A modified method for the in vitro determination of dry matter and organic matter digestibility. Can. J. Anim. Sci. 53, 251–256,
https://doi.org/10.4141/cjas73....
26.
Lee J.J., Seo J., Jung J.K., Lee J., Lee J.H., Seo S., 2014. Effects of β-mannanase supplementation on growth performance, nutrient digestibility, and nitrogen utilization of Korean native goat (Capra hircus coreanae). Livest. Sci. 169, 83–87,
https://doi.org/10.1016/j.livs....
27.
Maarif F., Januar L.C., 2009. Absorption of biogas carbon dioxide (CO2) using NaOH continually (in Indonesian). Master of Science Thesis. Diponegoro University. Semarang (Indonesia).
28.
Marhaeniyanto E., Susanti S., Siswanto B., Murti T., 2020. Use of Gliricidia sepium, Leucaena Leucocephala and Paraserianthes falcataria leaves in concentrates to improve the appearance of young male goats peranakan etawa in East Java, Indonesia. IOSR J. Agric. Vet. Sci. 13, 32–37.
29.
Molina-Botero I.C., Mazabel J., Arceo-Castillo J., Urrea-Benitez J.L., Oliver-Castillo L., Barahona-Rosales R., Chirinda N., Ku-Vera J., Arango J., 2020. Effect of the addition of Enterolobium cyclocarpum pods and Gliricidia sepium forage to Brachiaria brizantha on dry matter degradation, volatile fatty acid concentration, and in vitro methane production. Trop. Anim. Health Prod. 52, 2787–2798,
https://doi.org/10.1007/s11250....
30.
Molina-Botero I.C., Montoya-Flores M.D., Zavala-Escalante L.M., Barahona-Rosales R., Arango J., Ku-Vera J.C., 2019. Effects of long-term diet supplementation with Gliricidia sepium foliage mixed with Enterolobium cyclocarpum pods on enteric methane, apparent digestibility, and rumen microbial population in crossbred heifers. J. Anim. Sci. 97, 1619–1633,
https://doi.org/10.1093/jas/sk....
31.
Neto Y.A.A.H., de Freitas L.A.P., Cabral H., 2014. Multivariate analysis of the stability of spray-dried Eupenicillium javanicum peptidases. Dry. Technol. 32, 614–621,
https://doi.org/10.1080/073739....
32.
Neto H.Y.A.A., de Souza Motta M.C., Cabral H., 2013. Optimization of metalloprotease production by Eupenicillium javanicum in both solid state and submerged bioprocesses. Afr. J. Biochem. Research. 7, 146–157,
https://doi.org/10.5897/AJBR20....
33.
Neto H.Y.A.A., Rosa J.C., Cabral H., 2019. Peptides with antioxidant properties identified from casein, whey, and egg albumin hydrolysates generated by two novel fungal proteases. Preparative Biochem. Biotech. 49, 639–648,
https://doi.org/10.1080/108260....
34.
Neto H.Y.A.A., de Oliveira L.C.G., de Oliveira J.R., Juliano M.A., Juliano L., Arantes E.C., Cabral H. 2017. Analysis of the specificity and biochemical characterization of metalloproteases isolated from Eupenicillium javanicum using fluorescence resonance energy transfer peptides. Front. Microbiol. 7, 2141,
https://doi.org/10.3389/fmicb.....
35.
Ogimoto K., Imai S., 1981. Atlas of Rumen Microbiology. Japan Scientific Societies Press. Tokyo (Japan).
36.
Ortiz C.A.N., Vega M.L.R., 2020. Determination of in vitro digestibility of forage species used in ruminant feeding. Trop. Anim. Health Prod. 52, 3045–3059,
https://doi.org/10.1007/s11250....
37.
Paranamana N., Radampola K., Bulugahapitiya V.P., 2015. Nutritional and anti-nutritional contents of alternative plant feed ingredients for fish feed formulation. Indian J. Anim. Sci. 85, 212–215,
https://doi.org/10.56093/ijans....
38.
Paengkoum P., 2011. Utilization of concentrate supplements containing varying levels of coconut meal by Thai native Anglo-Nubian goats. Livest. Res. Rural Dev. 23, 1–7.
39.
Patra A.K., Yu Z., 2013. Effective reduction of enteric methane production by a combination of nitrate and saponin without adverse effect on feed degradability, fermentation, or bacterial and archaeal communities of the rumen. Bioresour. Technol. 148, 352–360,
https://doi.org/10.1016/j.bior....
40.
Purwadaria T., Nirwana N., Ketaren P.P., Pradono D.I., Widyastuti Y., 2003. Synergistic activity of enzymes produced by Eupenicillium javanicum and Aspergillus niger Nrrl 337 on palm oil factory wastes. Biotropia 20, 1–10,
https://doi.org/10.11598/btb.2....
41.
Ramos E.J.N., Matos J.C., Ferreira B.J.M., Rodrigues J. da P.S., Felix W.P., Menezes D.R., Gois G.C., Rodrigues R.T. de S., Queiroz M.A.A., 2021. Digestibility of starch protozoa count, and blood parameters off Dorper lambs with differences in residual feed intake. Small Ruminant Res. 201, 106415,
https://doi.org/10.1016/j.smal....
42.
Rira, M. Morgavi D.P., Archimede H., Marie-Magdeleine C., Popova M., Bousseboua H., Doreau M., 2015. Potential of tannin-rich plants for modulating ruminal microbes and ruminal fermentation in sheep. J. Anim. Sci. 93, 334–347,
https://doi.org/10.2527/jas.20....
43.
Roca-Fernández A.I., Dillard S.L., Soder K.J., 2020. Ruminal fermentation and enteric methane production of legumes containing condensed tannins fed in continuous culture. J. Dairy Sci. 103, 7028–7038,
https://doi.org/10.3168/jds.20....
44.
Rufino-Moya P.J., Blanco M., Bertolín J.R., Joy M., 2019. Effect of the method of preservation on the chemical composition and in vitro fermentation characteristics in two legumes rich in condensed tannins. Anim. Feed Sci. Tech. 251, 12–20,
https://doi.org/10.1016/j.anif....
45.
Santos K.C., Magalhães A.L.R., Silva D.K.A., Araújo G.G.L., Fagundes G.M., Ybarra N.G., Abdalla A.L., 2017. Nutritional potential of forage species found in Brazilian Semiarid region. Livest. Sci. 195, 118–124,
https://doi.org/10.1016/j.livs....
46.
Sato Y., Nakanishi T., Wang L., Oishi K., Hirooka H., Kumagai H., 2020. In vitro and in vivo evaluations of wine lees as feeds for ruminants: effects on ruminal fermentation characteristics, nutrient digestibility, blood metabolites and antioxidant status. Livest. Sci. 241, 104217,
https://doi.org/10.1016/j.livs....
47.
Seo J., Park J., Lee J., Lee J.H., Lee J.J., Kam D.K., Seo S., 2016. Enhancement of daily gain and feed efficiency of growing heifers by dietary supplementation of β-mannanase in Hanwoo (Bos taurus coreanae). Livest. Sci. 188, 21–24,
https://doi.org/10.1016/j.livs....
48.
Singh R., Sharma S., Sharma V., 2015. Comparative and quantitative analysis of antioxidant and scavenging potential of Indigofera tinctoria Linn. extracts. J. Integrative Med. 13, 269–278,
https://doi.org/10.1016/S2095-....
49.
Suharlina Astuti D.A., Nahrowi, Jayanegara A., Abdullah L., 2016. In vitro evaluation of concentrate feed containing Indigofera zollingeriana in goat. J. Indones. Trop. Anim. Agric. 41, 196–203,
https://doi.org/10.14710/jitaa....
50.
Tan H.Y., Sieo C.C., Abdullah N., Liang J.B., Huang X.D., Ho Y.W., 2011. Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Anim. Feed Sci. Technol. 169, 185–193,
https://doi.org/10.1016/j.anif....
51.
Tao N.G., Shi W.Q., Liu Y.J., Huang S.R.. 2011. Production of feed enzymes from citrus processing waste by solid-state fermentation with Eupenicillium javanicum. Int. J. Food Sci. Technol. 46, 1073–1079,
https://doi.org/10.1111/j.1365....
52.
Tarigan A., Ginting S.P., Arief II, Astuti D.A., Abdullah L., 2018. Body weight gain, nutrients degradability and fermentation rumen characteristics of Boerka Goat supplemented green concentrate pellets (gcp) based on Indigofera zollingeriana. Pak. J. Biol. Sci. 21, 87–94,
https://doi.org/10.3923/pjbs.2....
53.
Theodorou M.K., Williams B.A., Dhanoa M.S., McAllan A.B., France J., 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 48, 185–197,
https://doi.org/10.1016/0377-8....
54.
Van Soest P.J., Robertson J.B., Lewis B.A., 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597,
https://doi.org/10.3168/jds.S0....
55.
Yuliana P., Laconi E.B., Jayanegara A., Achmadi S.S., Samsudin A.A., 2019. Effect of Napier grass supplemented with Gliricidia sepium, Sapindus rarak or Habiscus rosa-sinensia on in vitro rumen fermentation profiles and methanogenesis. J. Indones. Trop. Anim. Agric. 44, 167–176,
https://doi.org/10.14710/jitaa....