REVIEW PAPER
Evaluation of the application and environmental sustainability
of alternative feed materials in sturgeon nutrition. A review
More details
Hide details
1
Poznań University of Life Sciences, Faculty of Veterinary Medicine and Animal Sciences, Department of Zoology,
Laboratory of Inland Fisheries and Aquaculture, Wojska Polskiego 71c, 60-625 Poznań, Poland
2
Poznań University of Life Sciences, Faculty of Veterinary Medicine and Animal Sciences, Department of Animal Nutrition,
Wołyńska 33, 60-637 Poznań, Poland
These authors had equal contribution to this work
Publication date: 2024-12-09
Corresponding author
M. Rawski
Poznań University of Life Sciences, Faculty of Veterinary Medicine and Animal Sciences, Department of Zoology, Laboratory of Inland Fisheries and Aquaculture, Wojska Polskiego 71c, 60-625 Poznań, Poland
KEYWORDS
TOPICS
ABSTRACT
In this review, sturgeon nutrition was systematically evaluated
based on 299 original research articles sourced from reputable journals using
commonly employed databases (PubMed and Google Scholar), supplemented
by two reviews on the dietary requirements of sturgeon species. This article
also details the paucity of nutritional research on sturgeon, updated sturgeon
nutritional requirements and feed composition, as well as the environmental
sustainability of alternative plant- and animal-based proteins utilised in sturgeon
nutrition. Furthermore, the review highlights the lack of data on environmental
sustainability assessment parameters for protein alternatives, such as fish
in: fish out (FIFO), and estimates sustainability based on feed conversion ratio
(FCR), and fishmeal (FM) and fish oil (FO) levels used in diets following standard
methodology. Finally, the review provides insights into the potential of using
insect protein and fat, especially from Hermetia illucens larvae, as a viable and
sustainable alternative in the evolving landscape of aquafeed production.
FUNDING
This study was conducted as part of the Innovative application of Hermetia illucens protein and fat in Acipenseridae fish aquaculture (LIDER/2/0018/L-12/20/NCBR/2021) project funded by The National Centre for Research and Development.
CONFLICT OF INTEREST
The Authors declare that there are no conflicts of interest.
REFERENCES (127)
1.
Alfiko Y., Xie D., Astuti R.T., Wong J., Wang L., 2022. Insects as a feed ingredient for fish culture: Status and trends. Aquaculture Fish. 7, 166–178,
https://doi.org/10.1016/j.aaf.....
2.
Ameixa O.M.C.C., Duarte P.M., Rodrigues D.P., 2020. Insects, Food Security, and Sustainable Aquaculture. In: W. Leal Filho, A.M. Azul, L. Brandli, P.G. Özuyar, T. Wall (Editors.). Zero Hunger (pp. 425–435), Springer International Publishing,
https://doi.org/10.1007/978-3-....
3.
Amlashi A.S., Falahatkar B., Sharifi S.D., 2012. Dietary vitamin E requirements and growth performance of young-of-the-year beluga, Huso huso (L.) (Chondrostei: Acipenseridae). Arch. Polish Fish. 20,
https://doi.org/10.2478/v10086....
4.
Ariman-Karabulut H., Kurtoğlu İ. Z., Kirtan Y. E., 2019. Effects of the feeds containing hazelnut meal as plant protein source on growth performance and body composition of Siberian sturgeon (Acipenser baerii) and economic profitability value. Turk. J. Vet. Anim. Sci. 43, 244–252,
https://doi.org/10.3906/vet-18....
5.
Askarian F., Zhou Z., Olsen R.E., Sperstad S., Ringø E., 2012. Culturable autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes and in vitro growth inhibition of four fish pathogens. Aquaculture 326–329, 1–8,
https://doi.org/10.1016/j.aqua....
6.
Azra M.N., Okomoda V.T., Tabatabaei M., Hassan M., Ikhwanuddin M., 2021. The contributions of shellfish aquaculture to global food security: assessing its characteristics from a future food perspective. Front. Marine Sci. 8, 654897,
https://doi.org/10.3389/fmars.....
7.
Belforti M., Gai F., Lussiana C. et al., 2015. Tenebrio molitor meal in rainbow trout (Oncorhynchus mykiss) diets: effects on animal performance, nutrient digestibility and chemical composition of fillets. Ital. J. Anim. Sci. 14, 4170,
https://doi.org/10.4081/ijas.2....
8.
Belghit I., Waagbø R., Lock E.J., Liland N.S., 2019. Insect-based diets high in lauric acid reduce liver lipids in freshwater Atlantic salmon. Aquaculture Nutr. 25, 343–357,
https://doi.org/10.1111/anu.12....
9.
Bestin A., Brunel O., Malledant A., Debeuf B., Benoit P., Mahla R., Chapuis H., Guémené D., Vandeputte M., Haffray P., 2021. Genetic parameters of caviar yield, color, size and firmness using parentage assignment in an octoploid fish species, the Siberian sturgeon Acipenser baerii. Aquaculture 540, 736725,
https://doi.org/10.1016/j.aqua....
10.
Boyd C.E., D’Abramo L.R., Glencross B.D. et al., 2020. Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges. J. World Aquaculture Soc. 51, 578–633,
https://doi.org/10.1111/jwas.1....
11.
Bronzi P., Chebanov M., Michaels J.T., Wei Q., Rosenthal H., Gessner J., 2019. Sturgeon meat and caviar production: Global update 2017. J. Appl. Ichthyol. 35, 257–266,
https://doi.org/10.1111/jai.13....
12.
Caimi C., Gasco L., Biasato I. et al., 2020a. Could dietary black soldier fly meal inclusion affect the liver and intestinal histological traits and the oxidative stress biomarkers of Siberian sturgeon (Acipenser baerii) juveniles? Animals 10, 155,
https://doi.org/10.3390/ani100....
13.
Caimi C., Renna M., Lussiana C. et al., 2020b. First insights on Black Soldier Fly (Hermetia illucens L.) larvae meal dietary administration in Siberian sturgeon (Acipenser baerii Brandt) juveniles. Aquaculture 515, 734539,
https://doi.org/10.1016/j.aqua....
14.
Chandra G., Fopp-Bayat D., 2021. Trends in aquaculture and conservation of sturgeons: A review of molecular and cytogenetic tools. Rev. Aquaculture 13, 119–137,
https://doi.org/10.1111/raq.12....
15.
Chebanov M., Williot P., 2018. An assessment of the characteristics of world production of Siberian Sturgeon destined to human consumption. In: P. Williot, G. Nonnotte, M. Chebanov (Eds.), The Siberian Sturgeon (Acipenser baerii, Brandt, 1869) Vol. 2—Farming, pp. 217–286. Springer International Publishing,
https://doi.org/10.1007/978-3-....
16.
Chen Z., Ibrahim U.B., Yu A., Wang L., Wang Y., 2023. Dried porcine soluble benefits to increase fish meal replacement with soy protein concentrate in large yellow croaker Larimichthys crocea diet. J. World Aquaculture Soc. 54, 1162–1178,
https://doi.org/10.1111/jwas.1....
17.
Council Regulation (EC) No 338/97 of 9 December 1996 on the protection of species of wild fauna and flora by regulating trade therein.
https://eur-lex.europa.eu/lega....
18.
Daniel N., 2018. A review on replacing fish meal in aqua feeds using plant protein sources. Int. J. Fish. Aquatic Stud. 6, 164–179.
19.
Daprà F., Francesco G.F., Palmegiano G.B., et al., 2009. Siberian sturgeon (Acipenser baerii, Brandt JF 1869) pancreas. Int. Aquat. Res. 1, 45–60.
21.
Defaee S., Falahatkar B., Lavajoo F., Efatpanah I., 2022. The effect of a phytogenic feed additive (Digestrom P.E.P) on growth performance, proximate composition, hematological and immunological indices of juvenile beluga sturgeon Huso huso. Aquaculture Int. 30, 1171–1183,
https://doi.org/10.1007/s10499....
22.
Deng D.F., Hemre G.I., Storebakken T., Shiau S.Y., Hung S.S.O., 2005. Utilization of diets with hydrolyzed potato starch, or glucose by juvenile white sturgeon (Acipenser transmontanus), as affected by Maillard reaction during feed processing. Aquaculture 248, 103–109,
https://doi.org/10.1016/j.aqua....
23.
Ding L., Chen J., Zhang Y., Xiao J., Xu X., Zhang H., Chen Q., Zhao Y., Chen W., 2023. Effects of dietary fish meal replacement with composite mixture of chicken meal, krill meal, and plant proteins on growth, physiological metabolism, and intestinal microbiota of Chinese perch (Siniperca chuatsi). Aquaculture Nutr. 2023, 1–13,
https://doi.org/10.1155/2023/2....
24.
Elhetawy A., Vasilyeva L., Sudakova N., Abdel-rahim M., 2023. Sturgeon aquaculture potentiality in egypt in view of the global development of aquaculture and fisheries conservation techniques: an overview and outlook. Aquatic Sci. Eng. 38, 222–231,
https://doi.org/10.26650/ASE20....
25.
Falahatkar B., 2018. Nutritional Requirements of the Siberian Sturgeon: An Updated Synthesis. In: P. Williot, G. Nonnotte, D. Vizziano-Cantonnet, M. Chebanov (Eds.); The Siberian Sturgeon (Acipenser baerii, Brandt, 1869) Volume 1—Biology, pp. 207–228. Springer International Publishing,
https://doi.org/10.1007/978-3-....
26.
Falahatkar B., Nasrollahzadeh A., 2011. Caspian Sea and the sturgeon catch in Iran. Doc Nat. 60, 1–12.
28.
Fawole F.J., Adeoye A.A., Tiamiyu L.O., Ajala K.I., Obadara S.O., Ganiyu I. O., 2020. Substituting fishmeal with Hermetia illucens in the diets of African catfish (Clarias gariepinus): Effects on growth, nutrient utilization, haemato-physiological response, and oxidative stress biomarker. Aquaculture 518, 734849,
https://doi.org/10.1016/j.aqua....
29.
Gasco L., Acuti G., Bani P. et al., 2020. Insect and fish by-products as sustainable alternatives to conventional animal proteins in animal nutrition. Ital. J. Anim. Sci. 19, 360–372,
https://doi.org/10.1080/182805....
30.
Gasco L., Gai F., Maricchiolo G., Genovese L., Ragonese S., Bottari T., Caruso G., 2018. Fishmeal Alternative Protein Sources for Aquaculture Feeds. In: L. Gasco, F. Gai, G. Maricchiolo, L. Genovese, S. Ragonese, T. Bottari, G. Caruso. Feeds for the Aquaculture Sector, pp. 1–28. Springer International Publishing,
https://doi.org/10.1007/978-3-....
31.
Gasco L., Henry M., Piccolo G., Marono S., Gai F., Renna M., Lussiana C., Antonopoulou E., Mola P., Chatzifotis S., 2016. Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax L.) juveniles: Growth performance, whole body composition and in vivo apparent digestibility. Anim. Feed Sci. Tech. 220, 34–45,
https://doi.org/10.1016/j.anif....
32.
Glencross B.D., Baily J., Berntssen M.H.G., Hardy R., MacKenzie S., Tocher D.R., 2020. Risk assessment of the use of alternative animal and plant raw material resources in aquaculture feeds. Rev. Aquaculture 12, 703–758,
https://doi.org/10.1111/raq.12....
33.
Gou N., Wang K., Jin T., Yang B., 2023. First Insights on the Administration of Insect Oil (Black Soldier Fly Larvae) in the Diet of Juvenile Onychostoma macrolepis. Animals 13, 518,
https://doi.org/10.3390/ani130....
34.
Guilbard F., Munro J., Dumont P., Hatin D., Fortin R., 2007. Feeding ecology of Atlantic sturgeon and Lake sturgeon co–occurring in the St. Lawrence estuarine transition zone. Amer. Fish. Soc. Symposium 56, 85–104.
35.
Guo Z., Zhu X., Liu J., Han D., Yang Y., Xie S., Lan Z., 2011. Dietary lipid requirement of juvenile hybrid sturgeon, Acipenser baerii♀×A. gueldenstaedtii♂: Dietary lipid requirement of juvenile hybrid sturgeon. J. Appl. Ichthyol. 27, 743–748,
https://doi.org/10.1111/j.1439....
36.
Gyan W.R., Mpwaga A.Y., Yang Q., Tan B., Chi S., Mao M., Yi Y., 2024. Corn gluten meal diets supplemented with dietary L-carnitine for juvenile hybrid grouper (♀Epinephelus fuscoguttatus × ♂E. lanceolatus): Impacts on growth performance, immune response and flesh quality. Anim. Feed Sci. Tech. 308, 115890,
https://doi.org/10.1016/j.anif....
37.
Hameed A., Majeed W., Naveed M., Ramzan U., Bordiga M., Hameed M., UrRehman S., Rana N., 2022. Success of Aquaculture Industry with New Insights of Using Insects as Feed: A Review. Fishes 7, 395,
https://doi.org/10.3390/fishes....
38.
Hazreen-Nita M.K., Abdul Kari Z., Mat K. et al., 2022. Olive oil by-products in aquafeeds: Opportunities and challenges. Aquaculture Rep. 22, 100998,
https://doi.org/10.1016/j.aqre....
39.
Henry M.A., Gasco L., Chatzifotis S., Piccolo G., 2018. Does dietary insect meal affect the fish immune system? The case of mealworm, Tenebrio molitor on European sea bass, Dicentrarchus labrax. Develop. Compar. Immunol. 81, 204–209,
https://doi.org/10.1016/j.dci......
40.
Henry M., Gasco L., Piccolo G., Fountoulaki E., 2015. Review on the use of insects in the diet of farmed fish: Past and future. Anim. Feed Sci. Tech. 203, 1–22,
https://doi.org/10.1016/j.anif....
41.
Hosseini-Shekarabi S.P., Shamsaie Mehrgan M., Banavreh A., 2021. Feasibility of superworm, Zophobas morio, meal as a partial fishmeal replacer in fingerling rainbow trout, Oncorhynchus mykiss, diet: Growth performance, amino acid profile, proteolytic enzymes activity, and pigmentation. Aquaculture Nutr. 27, 1077–1088,
https://doi.org/10.1111/anu.13....
42.
Hua K., 2021. A meta-analysis of the effects of replacing fish meals with insect meals on growth performance of fish. Aquaculture 530, 735732,
https://doi.org/10.1016/j.aqua....
43.
Hung S.S O., Storebakken T., Cui Y., Tian L., Einen O., 1997. High-energy diets for white sturgeon, Acipenser transmontanus Richardson. Aquaculture Nutr. 3, 281–286,
https://doi.org/10.1046/j.1365....
45.
Huyben D., Vidaković A., Werner Hallgren S., Langeland M., 2019. High-throughput sequencing of gut microbiota in rainbow trout (Oncorhynchus mykiss) fed larval and pre-pupae stages of black soldier fly (Hermetia illucens). Aquaculture 500, 485–491,
https://doi.org/10.1016/j.aqua.....
46.
Imanpoor M.R., Bagheri T., 2012. Effects of replacing fish meal by soybean meal along with supplementing phosphorus and magnesium in diet on growth performance of Persian sturgeon, Acipenser persicus. Fish Physiol. Biochem. 38, 521–528,
https://doi.org/10.1007/s10695....
48.
Jahanbakhshi A., Imanpoor M. R., Taghizadeh V., Shabani A., 2013. Hematological and serum biochemical indices changes induced by replacing fish meal with plant protein (sesame oil cake and corn gluten) in the Great sturgeon (Huso huso). Compar. Clin. Pathol. 22, 1087–1092,
https://doi.org/10.1007/s00580....
49.
Jiang M., Liu W., Wen H., Huang F., Wu F., Tian J., Yang C.G., Wang W.M., Wei Q.W., 2014. Effect of dietary carbohydrate sources on the growth performance, feed utilization, muscle composition, postprandial glycemic and glycogen response of Amur sturgeon, Acipenser schrenckii Brandt, 1869. J. Appl. Ichthyol. 30, 1613–1619,
https://doi.org/10.1111/jai.12....
50.
Józefiak A., Nogales-Mérida S., Rawski M., Kierończyk B., Mazurkiewicz J., 2019. Effects of insect diets on the gastrointestinal tract health and growth performance of Siberian sturgeon (Acipenser baerii Brandt, 1869). BMC Vet. Res. 15, 348,
https://doi.org/10.1186/s12917....
51.
Kamaszewski M., Gosk A., Skrobisz M., Ostaszewska T., 2017. Change in Sox9 protein localization through gonad development in Russian sturgeon (Acipenser gueldenstaedtii). Aquaculture Res. 48, 3111–3120,
https://doi.org/10.1111/are.13....
52.
Katya K., Borsra M.Z.S., Ganesan D., Kuppusamy G., Herriman M., Salter A., Ali S.A., 2017. Efficacy of insect larval meal to replace fish meal in juvenile barramundi, Lates calcarifer reared in freshwater. Int. Aquatic Res. 9, 303–312,
https://doi.org/10.1007/s40071....
53.
Kaushik S.J., Breque J., Blanc D., 1991. Requirement for protein and essential amino acids and their utilization by Siberian sturgeon (Acipenser baerii). In: Williot P., Ed. Proceedings of the first international symposium on the sturgeon. 3-6 October, 1989. Bordeaux-France. CEMAGREF, pp. 25-39, 520.
54.
Kaushik S.J., Luquet P., Blanc D., Paba A., 1989. Studies on the nutrition of Siberian sturgeon, Acipenser baerii. Aquaculture 76, 97–107,
https://doi.org/10.1016/0044-8....
55.
Keramat-Amirkolaie A., Mahdavi S., Hosseini S.A., 2012. Dietary fat content and feed supply influence growth and body composition in juvenile beluga sturgeon (Huso huso). Aquaculture Int. 20, 859–867,
https://doi.org/10.1007/s10499....
56.
Khosravi S., Kim E., Lee Y., Lee S., 2018. Dietary inclusion of mealworm (Tenebrio molitor) meal as an alternative protein source in practical diets for juvenile rockfish (Sebastes schlegeli). Entomol. Res. 48, 214–221,
https://doi.org/10.1111/1748-5....
57.
Kierończyk B., Rawski M., Mikołajczak Z., Homska N., Jankowski J., Ognik K., Józefiak A., Mazurkiewicz J., Józefiak D., 2022. Available for millions of years but discovered through the last decade: Insects as a source of nutrients and energy in animal diets. Anim. Nutr. 11, 60–79,
https://doi.org/10.1016/j.anin....
58.
Kowalska J., Rawski M., Homska N., Mikołajczak Z., Kierończyk B., Świątkiewicz S., Wachowiak R., Hetmańczyk K., Mazurkiewicz J., 2022. The first insight into full-fat superworm (Zophobas morio) meal in guppy (Poecilia reticulata) diets: A study on multiple-choice feeding preferences and growth performance. Ann. Anim. Sci. 22, 371–384,.
https://doi.org/10.2478/aoas-2....
59.
Lazzarotto V., Corraze G., Leprevost A., Quillet E., Dupont-Nivet M., Médale F., 2015. Three-year breeding cycle of rainbow trout (Oncorhynchus mykiss) fed a plant-based diet, totally free of marine resources: consequences for reproduction, fatty acid composition and progeny survival. PLOS ONE 10, e0117609,
https://doi.org/10.1371/journa....
60.
Lee S., Zhai S., Deng D.F., Li Y., Blaufuss P.C., Eggold B.T., Binkowski F., 2022. Feeding strategies for adapting lake sturgeon (Acipenser fulvescens) larvae to formulated diets at early life stages. Animals 12, 3128,
https://doi.org/10.3390/ani122....
61.
Li Y., Li W., Luo L., Ren Y., Xing W., Xu G., Li T., Xue M., Yu H., Wu Z., 2023. Dietary lipid levels affect growth performance, lipid metabolism, antioxidant and immune status of Amur sturgeon, Acipenser schrenckii. Aquaculture Rep. 33, 101796,
https://doi.org/10.1016/j.aqre....
62.
Liland N.S., Araujo P., Xu X. X., Lock E.J., Radhakrishnan G., Prabhu A.J.P., Belghit I., 2021. A meta-analysis on the nutritional value of insects in aquafeeds. J. Insects Food Feed 7, 743–759,
https://doi.org/10.3920/JIFF20....
63.
Long S., You Y., Dong X. et al., 2022. Effect of dietary oxidized fish oil on growth performance, physiological homeostasis and intestinal microbiome in hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ Epinephelus lanceolatus). Aquaculture Rep. 24, 101130,
https://doi.org/10.1016/j.aqre....
64.
Marques V.H., Moreira R.G., Branco G.S., Honji R.M., Rombenso A.N., Viana M.T., Mello P.H.D., Mata-Sotres J.A., Araújo B.C., 2021. Different saturated and monounsaturated fatty acids levels in fish oil-free diets to cobia (Rachycentron canadum) juveniles: Effects in growth performance and lipid metabolism. Aquaculture 541, 736843,
https://doi.org/10.1016/j.aqua....
65.
Mata-Sotres J.A., Marques V. H., Barba D., Braga A., Araújo B., Viana M.T., Rombenso A.N., 2021. Increasing dietary SFA:MUFA ratio with low levels of LC-PUFA affected lipid metabolism, tissue fatty acid profile and growth of juvenile California Yellowtail (Seriola dorsalis). Aquaculture 543, 737011,
https://doi.org/10.1016/j.aqua....
66.
Maulu S., Langi S., Hasimuna O.J. et al., 2022. Recent advances in the utilization of insects as an ingredient in aquafeeds: A review. Anim. Nutr. 11, 334–349,
https://doi.org/10.1016/j.anin....
67.
Mazurkiewicz J., Przybył A., Golski J., 2009. Usability of some plant protein ingredients in the diets of Siberian sturgeon Acipenser baerii Brandt. Arch. Polish Fish. 17,
https://doi.org/10.2478/v10086....
68.
Medale F., Corraze G., Kaushik S.J., 1995. Nutrition of farmed Siberian sturgeon. A review of our current knowledge. In: Proceedings of international symposium on sturgeon. 6–11th September 1993. Moscow-Kostroma-Moscow, Russia. VNIRO Publishing.
69.
Mikołajczak Z., Mazurkiewicz J., Rawski M., Kierończyk B., Józefiak A., Świątkiewicz S., Józefiak, D., 2023. Black soldier fly full-fat meal in Atlantic salmon nutrition – Part B: Effects on growth performance, feed utilization, selected nutriphysiological traits and production sustainability in pre-smolts. Ann. Anim. Sci. 23, 239–251,
https://doi.org/10.2478/aoas-2....
70.
Mikołajczak Z., Rawski M., Mazurkiewicz J., Kierończyk B., Józefiak D., 2020. The effect of hydrolyzed insect meals in sea trout fingerling (Salmo trutta m. Trutta) diets on growth performance, microbiota and biochemical blood parameters. Animals 10, 1031,
https://doi.org/10.3390/ani100....
71.
Mohseni M., Ghelichpour M., Sayed-Hassani M.H., Ollah-Pajand Z., Ghorbani-Vaghei, R., 2023. Effects of dietary thiamine supplementation on growth performance, digestive enzymes’ activity, and biochemical parameters of beluga, Huso huso, larvae. J. Appl. Ichthyol. 2023, 1–10,
https://doi.org/10.1155/2023/6....
72.
Mohseni M., Pourali H. R., Kazemi R., Bai S.C., 2013. Evaluation of the optimum dietary protein level for the maximum growth of juvenile beluga (Huso huso L.1758). Aquaculture Res. 45, 1832–1841,
https://doi.org/10.1111/are.12....
73.
Mohseni M., Sajjadi M., Pourkazemi M., 2007. Growth performance and body composition of sub-yearling Persian sturgeon, (Acipenser persicus, Borodin, 1897), fed different dietary protein and lipid levels. J. Appl. Ichthyol. 23, 204–208,
https://doi.org/10.1111/j.1439....
74.
Moore B.J., Hung S.S.O., Medrano J.F., 1988. Protein requirement of hatchery-produced juvenile white sturgeon (Acipenser transmontanus). Aquaculture 71, 235–245,
https://doi.org/10.1016/0044-8....
75.
Najafi M., Falahatkar B., Safarpour-Amlashi A., Tolouei Gilani M.H., 2017. The combined effects of feeding time and dietary lipid levels on growth performance in juvenile beluga sturgeon Huso huso. Aquaculture Int. 25, 31–45,
https://doi.org/10.1007/s10499....
76.
Ng W.K., Hung S.S.O., 1995. Estimating the ideal dietary indispensable amino acid pattern for growth of white sturgeon, Acipenser transmontanus (Richardson). Aquaculture Nutr. 1, 85–94,
https://doi.org/10.1111/j.1365....
77.
Nogales-Mérida S., Gobbi P., Józefiak D., Mazurkiewicz J., Dudek K., Rawski M., Kierończyk B., Józefiak A., 2019. Insect meals in fish nutrition. Rev. Aquaculture 11, 1080–1103,
https://doi.org/10.1111/raq.12....
78.
Page M. J., McKenzie J.E., Bossuyt P.M. et al., 2021. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 10, 89,
https://doi.org/10.1186/s13643....
79.
Pailan G.H., Biswas G., 2022. Feed and Feeding Strategies in Freshwater Aquaculture. In T.D. Lama, D. Burman, U.K. Mandal, S.K. Sarangi, H.S. Sen (Eds.). Transforming Coastal Zone for Sustainable Food and Income Security, pp. 455–475. Springer International Publishing.
https://doi.org/10.1007/978-3-....
80.
Palma L., Fernandez-Bayo J., Niemeier D., Pitesky M., VanderGheynst J.S., 2019. Managing high fiber food waste for the cultivation of black soldier fly larvae. Npj Sci. Food 3, 15,
https://doi.org/10.1038/s41538....
81.
Pang X., Tan G., Sun H., Shi H.Y., Su S.Q., Li Y., Fu S.J., 2022. Effect of feeding different diets on postprandial metabolic response, digestive capacity and growth performance in juvenile southern catfish (Silurus meridionalis). Aquaculture Rep. 27, 101413,
https://doi.org/10.1016/j.aqre....
82.
Pelic M., Vidakovic-Knezevic S., Zivkov-Balos M., Popov N., Novakov N., Cirkovic M., Ljubojevic-Pelic D., 2019. Fatty acid composition of Acipenseridae – sturgeon fish. IOP Conference Series: Earth and Environmental Science 333, 012092,
https://doi.org/10.1088/1755-1....
83.
Prabu E., Felix S., Felix N., Ahilan B., Ruby P., 2017. An overview on significance of fish nutrition in aquaculture industry. Int. J. Fish. Aquatic Stud. 5, 349–355.
84.
Pulido-Rodriguez L.F., Cardinaletti G., Secci G., Randazzo B., Bruni L., Cerri R., Olivotto I., Tibaldi E., Parisi G., 2021. Appetite regulation, growth performances and fish quality are modulated by alternative dietary protein ingredients in gilthead sea bream (Sparus aurata) culture. Animals 11, 1919,
https://doi.org/10.3390/ani110....
85.
Qu H., Ke W., Wen Z., Guo B., Lu X., Zhao Y., Yang Y., 2022. Effects of dietary carbohydrate on growth, feed utilization, hepatic glucose, and lipid metabolism in endangered Yangtze sturgeon (Acipenser dabryanus). Aquaculture Rep. 26, 101334,
https://doi.org/10.1016/j.aqre....
86.
Randazzo B., Zarantoniello M., Cardinaletti G., Cerri R., Giorgini E., Belloni A., Contò M., Tibaldi E., Olivotto I., 2021. Hermetia illucens and poultry by-product meals as alternatives to plant protein sources in Gilthead Seabream (Sparus aurata) diet: A multidisciplinary study on fish gut status. Animals 11, 677,
https://doi.org/10.3390/ani110....
87.
Rawski M., Mazurkiewicz J., Kierończyk B., Józefiak D., 2020. Black soldier fly full-fat larvae meal as an alternative to fish meal and fish oil in Siberian sturgeon nutrition: The effects on physical properties of the feed, animal growth performance, and feed acceptance and utilization. Animals 10, 2119,
https://doi.org/10.3390/ani101....
88.
Rawski M., Mazurkiewicz J., Kierończyk B., Józefiak D., 2021. Black soldier fly full-fat larvae meal is more profitable than fish meal and fish oil in Siberian sturgeon farming: The effects on aquaculture sustainability, economy and fish GIT development. Animals 11, 604,
https://doi.org/10.3390/ani110....
89.
Ren Y., Wei S., Yu H., Xing W., Xu G., Li T., Luo L., 2021. Dietary lipid levels affect growth, feed utilization, lipid deposition, health status, and digestive enzyme activities of juvenile Siberian sturgeon, Acipenser baerii. Aquaculture Nutr. 27, 2019–2028,
https://doi.org/10.1111/anu.13....
90.
Rombenso A.N., Trushenski J.T., Drawbridge M., 2018. Saturated lipids are more effective than others in juvenile California yellowtail feeds—Understanding and harnessing LC-PUFA sparing for fish oil replacement. Aquaculture 493, 192–203,
https://doi.org/10.1016/j.aqua....
91.
Rombenso A.N., Trushenski J.T., Jirsa D., Drawbridge M., 2015. Successful fish oil sparing in White Seabass feeds using saturated fatty acid-rich soybean oil and 22:6n-3 (DHA) supplementation. Aquaculture 448, 176–185,
https://doi.org/10.1016/j.aqua....
92.
Ronyai A., Csengeri I., Varadi L., 2002. Partial substitution of animal protein with full-fat soybean meal and amino acid supplementation in the diet of Siberian sturgeon (Acipenser baerii). J. Appl. Ichthyol. 18, 682–684,
https://doi.org/10.1046/j.1439....
93.
Ruban G., Mugue N., 2022. Acipenser baerii. The IUCN Red List of Threatened Species 2022, e.T244A156718817,
https://dx.doi.org/10.2305/IUC.... Accessed on 07 March 2024.
94.
Rumbos C.I., Mente E., Karapanagiotidis I.T., Vlontzos G., Athanassiou C.G., 2021. Insect-based feed ingredients for aquaculture: A case study for their acceptance in Greece. Insects 12, 586,
https://doi.org/10.3390/insect....
95.
Rzepkowska M., Ostaszewska T., Gibala M., Roszko M.L., 2014. Intersex gonad differentiation in cultured Russian (Acipenser gueldenstaedtii) and Siberian (Acipenser baerii) sturgeon. Biol. Reprod. 90, 1–10,
https://doi.org/10.1095/biolre....
96.
Sankian Z., Khosravi S., Kim Y.O., Lee S.M., 2019. Total replacement of dietary fish oil with alternative lipid sources in a practical diet for mandarin fish, Siniperca scherzeri, juveniles. Fish. Aquatic Sci. 22, 8,
https://doi.org/10.1186/s41240....
97.
Sayed-Hassani M.H., Banavreh A., Yousefi-Jourdehi A., Mohseni M., Monsef Shokri M., Yeganeh-Rastekenari H., 2021. The feasibility of partial replacement fish meal with poultry by-products in practical diets of juvenile great sturgeon, Huso huso: Effects on growth performance, body composition, physiometabolic indices, digestibility and digestive enzymes. Aquaculture Res. 52, 3605–3616,
https://doi.org/10.1111/are.15....
98.
Sicuro B., 2018. Reasons and Possibilities of Fish Meal Replacement in the Siberian Sturgeon. In: P. Williot, G. Nonnotte, M. Chebanov (Eds.). The Siberian Sturgeon (Acipenser baerii, Brandt, 1869) Vol. 2—Farming, pp. 85–95. Springer International Publishing,
https://doi.org/10.1007/978-3-....
99.
Sicuro B., Gai F., Daprà F., Palmegiano G.B., 2012. Hybrid sturgeon ‘AL’ (Acipenser naccarii×Acipenser baeri) diets: The use of alternative plant protein sources: Hybrid sturgeon ‘AL’ diets. Aquaculture Res. 43, 161–166,
https://doi.org/10.1111/j.1365....
100.
Sicuro B., Piccinno M., Dapra F., Gai F., Vilella S., 2015. Utilization of rice protein concentrate in Siberian sturgeon (Acipenser baerii Brandt) nutrition. Turk. J. Fish. Aquatic Sci. 15, 311–317,
https://doi.org/10.4194/1303-2....
101.
Silva M.F.O.D., Romaneli R.D.S., Mussoi L.F., Masagounder K., Fracalossi D.M., 2023. Impact of reference diet composition on apparent digestibility coefficients of two protein-rich ingredients in Nile tilapia. Scientia Agricola 80, e20220189,
https://doi.org/10.1590/1678-9....
102.
Stankus A., 2021. State of World Aquaculture 2020 and regional reviews: FAO webinar series. FAO aquaculture newsletter 63, 17–18.
103.
Tacon A.G.J., Metian M., McNevin A.A., 2022. Future feeds: suggested guidelines for sustainable development. Rev. Fish. Sci. Aquaculture 30, 271–279,
https://doi.org/10.1080/233082....
104.
Tavakoli S., Luo Y., Regenstein J.M., Daneshvar E., Bhatnagar A., Tan Y., Hong H., 2021. Sturgeon, caviar, and caviar substitutes: from production, gastronomy, nutrition, and quality change to trade and commercial mimicry. Rev. Fish. Sci. Aquaculture 29, 753–768,
https://doi.org/10.1080/233082....
105.
Tippayadara N., Dawood M.A.O., Krutmuang P., Hoseinifar S.H., Doan H.V., Paolucci M., 2021. Replacement of fish meal by black soldier fly (Hermetia illucens) larvae meal: Effects on growth, haematology, and skin mucus immunity of Nile Tilapia, Oreochromis niloticus. Animals 11, 193,
https://doi.org/10.3390/ani110....
106.
Treanor H.B., Miller I.R., Halvorson L.J., Van-Eenennaam J.P., Doroshov S.I., Webb M.A.H., 2018. Effect of dietary fat on adipocyte size in farmed age-2 white sturgeon (Acipenser transmontanus, Richardson, 1836). J. Appl. Ichthyol. 34, 419–423,
https://doi.org/10.1111/jai.13....
107.
Trushenski J.T., Rombenso A.N., 2020. Trophic levels predict the nutritional essentiality of polyunsaturated fatty acids in fish—introduction to a special section and a brief synthesis. North Amer. J. Aquaculture 82, 241–250,
https://doi.org/10.1002/naaq.1....
108.
Veldkamp T., Meijer N., Alleweldt F., Deruytter D., Van-Campenhout L., Gasco L., Roos N., Smetana S., Fernandes A., Van Der Fels-Klerx H.J., 2022. Overcoming technical and market barriers to enable sustainable large-scale production and consumption of insect proteins in Europe: A SUSINCHAIN perspective. Insects 13, 281,
https://doi.org/10.3390/insect....
109.
Wang C., Zhao Z., Lu S., Liu Y., Han S., Jiang H., Yang Y., Liu H., 2023. Physiological, Nutritional and Transcriptomic Responses of Sturgeon (Acipenser schrenckii) to Complete Substitution of Fishmeal with Cottonseed Protein Concentrate in Aquafeed. Biology, 12(4), 490.
https://doi.org/10.3390/biolog....
110.
Wang G., Peng K., Hu J., Yi C., Chen X., Wu H., Huang Y., 2019. Evaluation of defatted black soldier fly (Hermetia illucens L.) larvae meal as an alternative protein ingredient for juvenile Japanese seabass (Lateolabrax japonicus) diets. Aquaculture 507, 144–154,
https://doi.org/10.1016/j.aqua....
111.
Wang L., Xu H., Wang Y., Wang C., Li J., Zhao Z., Luo L., Du X., Xu Q., 2017. Effects of the supplementation of vitamin D3 on the growth and vitamin D metabolites in juvenile Siberian sturgeon (Acipenser baerii). Fish Physiol. Biochem. 43, 901–909,
https://doi.org/10.1007/s10695....
112.
Wen H., Yan A.S., Gao Q., Jiang M., Wei Q.W., 2008. Dietary vitamin A requirement of juvenile Amur sturgeon (Acipenser schrenckii). J. Appl. Ichthyol. 24, 534–538,
https://doi.org/10.1111/j.1439....
113.
Williot P., Nonnotte G., Chebanov M. (Eds.), 2018. The Siberian Sturgeon (Acipenser baerii, Brandt, 1869), vol. 2—Farming. Springer International Publishing,
https://doi.org/10.1007/978-3-....
114.
Xiao H., Wang J.S., Wen Z.H., Lu X.B., Liu H., 1999. Studies on suitable nutrient content in formulated diet for juvenile Acipenser sinensis. J. Fish Sci. China. 6, 33–38.
115.
Xu H., Bi Q., Liao Z., Sun B., Jia L., Wei Y., Liang M., 2021. Long-term alternate feeding between fish oil- and terrestrially sourced oil-based diets mitigated the adverse effects of terrestrially sourced oils on turbot fillet quality. Aquaculture 531, 735974,
https://doi.org/10.1016/j.aqua....
116.
Xu Q.Y., Wang C.A., Zhao Z.G., Luo L., 2012. Effects of replacement of fish meal by soy protein isolate on the growth, digestive enzyme activity and serum biochemical parameters for juvenile Amur sturgeon (Acipenser schrenckii). Asian-Australas. J. Anim. Sci. 25, 1588–1594,
https://doi.org/10.5713/ajas.2....
117.
Xue M., Yun B., Wang J., Sheng H., Zheng Y., Wu X., Qin Y., Li P., 2012. Performance, body compositions, input and output of nitrogen and phosphorus in Siberian sturgeon, Acipenser baerii Brandt, as affected by dietary animal protein blend replacing fishmeal and protein levels: Alternative protein for Siberian sturgeon. Aquaculture Nutr. 18, 493–501,
https://doi.org/10.1111/j.1365....
118.
Yazdani-Sadati M.A., Sayed-Hassani M.H., Pourkazemi M., Shakourian M., Pourasadi M., 2014. Influence of different levels of dietary choline on growth rate, body composition, Hematological indices and liver lipid of juvenile Siberian sturgeon Acipenser baerii Brandt, 1869. J. Appl. Ichthyol. 30, 1632–1636,
https://doi.org/10.1111/jai.12....
119.
Yi H.Y., Chowdhury M., Huang Y.D., Yu X.Q., 2014. Insect antimicrobial peptides and their applications. Appl. Microbiol. Biotechnol. 98, 5807–5822,
https://doi.org/10.1007/s00253....
120.
Yue H., Wu J., Ruan R., Ye H., Chen X., Li, C., 2019. 1H NMR-based metabolomics investigation of dietary soybean meal supplementation in hybrid sturgeon (Acipenser. baerii ♀× A. schrenckii ♂),
https://doi.org/10.21203/rs.2.....
121.
Yun B., Xue M., Wang J., Sheng H., Zheng Y., Wu X., Li J., 2014. Fishmeal can be totally replaced by plant protein blend at two protein levels in diets of juvenile Siberian sturgeon, Acipenser baerii Brandt. Aquaculture Nutr. 20, 69–78,
https://doi.org/10.1111/anu.12....
122.
Zarantoniello M., Randazzo B., Nozzi V. et al., 2021. Physiological responses of Siberian sturgeon (Acipenser baerii) juveniles fed on full-fat insect-based diet in an aquaponic system. Sci. Rep. 11, 1057,
https://doi.org/10.1038/s41598....
123.
Zhang D., Zheng Y., Wang X., Wang D., Luo H., Zhu W., Zhang W., Chen Z., Shao J., 2023. Effects of dietary fish meal replaced by fish steak meal on growth performance, antioxidant capacity, intestinal health and microflora, inflammatory response, and protein metabolism of large yellow croaker Larimichthys crocea. Aquaculture Nutr. 2023, 1–13,
https://doi.org/10.1155/2023/2....
124.
Zheng K.K., Deng D.F., De-Riu N., Moniello G., Hung S.S.O., 2015. The effect of feeding rate on the growth performance of green sturgeon (Acipenser medirostris) fry. Aquaculture Nutr. 21, 489–495,
https://doi.org/10.1111/anu.12....
125.
Zhou L., Han D., Zhu X., Yang Y., Jin J., Xie S., 2016. Effects of total replacement of fish oil by pork lard or rapeseed oil and recovery by a fish oil finishing diet on growth, health, and fish quality of gibel carp (Carassius auratus gibelio). Aquaculture Res. 47, 2961–2975,
https://doi.org/10.1111/are.12....
126.
Zhu H., He A., Chen L., Qin J., Li E., Li Q., Wang H., Zhang T., Su X., 2017. Effects of dietary lipid level and n-3/n-6 fatty acid ratio on growth, fatty acid composition and lipid peroxidation in Russian sturgeon Acipenser gueldenstaedtii. Aquaculture Nutr. 23, 879–890,
https://doi.org/10.1111/anu.12....
127.
Zhu H., Gong G., Wang J., Wu X., Xue M., Niu C., Guo L., Yu Y., 2011. Replacement of fish meal with blend of rendered animal protein in diets for Siberian sturgeon (Acipenser baerii Brandt), results in performance equal to fish meal fed fish: Alternative protein utilization for Siberian sturgeon. Aquaculture Nutr. 17, e389–e395,
https://doi.org/10.1111/j.1365....