SHORT COMMUNICATION
Evaluation of the biochemical composition of the greater duckweed Spirodela polyrhiza (L. Schleiden)
More details
Hide details
1
The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Department of Animal Nutrition,
Instytucka 3, 05-110 Jabłonna, Poland
Publication date: 2024-11-08
Corresponding author
B. Kowalik
The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Department of Animal Nutrition,
Instytucka 3, 05-110 Jabłonna, Poland
J. Anim. Feed Sci. 2024;33(4):542-546
KEYWORDS
TOPICS
ABSTRACT
The objective of this study was to evaluate the nutritional value
of Spirodela polyrhiza (L. Schleiden) (greater duckweed, GD) by analysing its
chemical composition, mineral content and amino acid profile under laboratory
conditions. GD was cultured in an aquarium illuminated from 04:00 to 24:00,
maintaining a water temperature at 25 °C and a pH range of 6.5–7.3. The plants
were collected, dried and ground for analysis. The content of crude protein,
fat, ash, fibre and starch of GD was (% dry matter): 31.3, 5.7, 17.9, 10.5 and
7.8, respectively. The content of total amino acids, essential amino acids and
nonessential amino acids was (g/100 g crude protein): 76.6, 36.5 and 40.1,
respectively. The total content of minerals, macronutrients and trace elements
in GD biomass was (g/100 g crude ash): 34.3, 34.2 and 0.1, respectively. In
summary, our data indicate that Spirodela polyrhiza has a high content of crude
protein and ash as well as significant amounts of amino acids and minerals. This
suggests that GD could potentially be a valuable source of these nutrients for
both animals and humans.
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
REFERENCES (19)
1.
AOAC International, 2011. Official methods of analysis association of AOAC International. 18th edition. Arlington, VA (USA)
2.
Appenroth K-J., Sowjanya Sree K., Böhmc V., Hammann S., Vetterd W., Leiterere M., Jahreis G., 2017. Nutritional value of duckweeds (Lemnaceae) as human food. Food Chem. 217, 266–273,
http://dx.doi.org/10.1016/j.fo....
3.
Appenroth K-J., Sree K.S., Bog M. et al., 2018. Nutritional value of the duckweed species of the genus Wolffia (Lemnaceae) as human. Food. Front. Chem. 6, 483,
http://dx.doi.org/10.3389/fche....
4.
Chakrabarti R., Clark W.D., Sharma J.G., Goswami R.K., Shrivastav A.K., Tocher D.R., 2018. Mass production of Lemna minor and its amino acid and fatty acid profiles. Front. Chem. 6, 479,
https://doi.org/10.3389/fchem.....
5.
Demann J., Petersen F., Dusel G., Bog M., Devlamynck R., Ulbrich A., Olfs H.-W., Westendarp H., 2023. Nutritional value of duckweed as protein feed for broiler chickens – digestibility of crude protein, amino acids and phosphorus. Animals 13, 130,
https://doi.org/10.3390/ani130....
6.
Hoang P.T.N., Schubert I., 2017. Reconstruction of chromosome rearrangements between the two most ancestral duckweed species Spirodela polyrhiza and S. intermedia. Chromosoma 126, 729–739,
https://doi.org/10.1007/s00412....
7.
Kumar G., Sharma J.G., Goswami R.K., Shrivastav A.K.., Tocher DR., Kumar N., Chakrabarti R., 2022. Freshwater macrophytes: a potential source of minerals and fatty acids for fish, poultry, and livestock. Front. Nutr. 9, 869425,
https://doi.org/10.3389/fnut.2....
8.
Ma Y.B., Zhu M., Yu C.J., Wang Y., Liu Y., Li M.L., Sun Y.D., Zhao J.S., Zhou G.K., 2017. Large-scale screening and characterisation of Lemna aequinoctialis and Spirodela polyrhiza strains for starch production. Plant Biol. 20, 357–364,
https://doi.org/10.1111/plb.12....
9.
Miltko R., Majewska M. P., Wojtak W., Białek M., Kowalik B., Czauderna M., 2024. Comparing the chemical composition of lesser duckweed (Lemna minor L.) grown in natural and laboratory settings. J. Anim. Feed Sci. 33, 357–367,
https://doi.org/10.22358/jafs/....
10.
Pagliuso D., Grandis A., Fortirer J.S., Camargo P., Floh E.I.S., Buckeridge M.S., 2022. Duckweeds as promising food feedstocks globally. Agronomy, 12, 796,
https://doi.org/10.3390/agrono....
11.
Said D.S., Chrismadha T., Mayasari N., Widiyanto T., Ramandita A., 2022. Nutritional content and growth ability of duckweed Spirodela polyrhiza on various culture media. IOP Conf. Ser.: Earth Environ. Sci. 1062, 012009,
https://doi:10.1088/1755-1315/....
12.
Sharma JaiGopal, Clarkb W.D., Kumar S.A., Kumar G.R., Tocherb D.R., Chakrabarti R., 2019. Production potential of greater duckweed Spirodela polyrhiza (L. Schleiden) and its biochemical composition evaluation. Aquaculture. 513, 734419,
https://doi.org/10.1016/j.aqua....
13.
Smith S.D.P., 2014. The roles of nitrogen and phosphorus in regulating the dominance of floating and submerged aquatic plants in a field mesocosm experiment. Aquat. Bot. 112, 1–9,
https://doi.org/10.1016/j.aqua....
14.
Sońta M., Rekiel M., Batorska M., 2019. Use of duckweed (Lemna L.) in sustainable livestock production and aquaculture – a review. Ann. Anim. Sci. 19, 257–271,
https://doi.org/10.2478/aoas-2....
15.
Sree K.S., Appenroth K.J., 2020. Worldwide Genetic Resources of Duckweed: Stock Collections. In: The Duckweed Genomes. Compendium of Plant Genomes. Cao X., Fourounjian P., Wang W., Editors; Springer: Cham; Switzerland AG; pp. 39–46.
16.
Tang J., Li Y., Ma J., Cheng J.J., 2015. Survey of duckweed diversity in Lake Chaoand total fatty acid, triacylglycerol, profiles of representative strains. Plant Biol. 17, 1066–1072
https://doi.org/10.1111/plb.12....
17.
Xu J., Shen Y., Zheng Y., Smith G., Sun X.S., Wang D., Zhao Y., Zhang W., Li Y. 2021. Duckweed (Lemnaceae) for potentially nutritious human food: A review. Food Rev. Int. 39, 3620–3634,
https://doi.org/10.1080/875591....
18.
Yu G., Liu H., Venkateshan K., Yan S., Cheng J., Sun X. S., Wang D., 2011. Functional, physiochemical, and rheological properties of duckweed (Spirodela polyrhiza) protein. Transactions of the ASABE. 54, 555–561,
https://doi.org/10.13031/2013.....
19.
Zhao Z., Shi H.J., Wang M.L., Cui L., Zhao H., Yun Z., 2015. Effect of nitrogen and phosphorus deficiency on transcriptional regulation of genes encoding key enzymes of starch metabolism in duckweed (Landoltia punctata). Plant Physiol. Biochem. 86, 72–81,
http://dx.doi.org/10.1016/j.pl... 0981-9428.
CITATIONS (1):
1.
The effect of natural and synthetic zeolites on polysaccharidase activity in the rumen of Jersey heifers
M. P. Majewska, U. Wolska-Świętlicka, R. Miltko, G. Bełżecki, A. Kędzierska, B. Kowalik
Journal of Animal and Feed Sciences