SHORT COMMUNICATION
 
KEYWORDS
TOPICS
ABSTRACT
The objective of this study was to evaluate the nutritional value of Spirodela polyrhiza (L. Schleiden) (greater duckweed, GD) by analysing its chemical composition, mineral content and amino acid profile under laboratory conditions. GD was cultured in an aquarium illuminated from 04:00 to 24:00, maintaining a water temperature at 25 °C and a pH range of 6.5–7.3. The plants were collected, dried and ground for analysis. The content of crude protein, fat, ash, fibre and starch of GD was (% dry matter): 31.3, 5.7, 17.9, 10.5 and 7.8, respectively. The content of total amino acids, essential amino acids and nonessential amino acids was (g/100 g crude protein): 76.6, 36.5 and 40.1, respectively. The total content of minerals, macronutrients and trace elements in GD biomass was (g/100 g crude ash): 34.3, 34.2 and 0.1, respectively. In summary, our data indicate that Spirodela polyrhiza has a high content of crude protein and ash as well as significant amounts of amino acids and minerals. This suggests that GD could potentially be a valuable source of these nutrients for both animals and humans.
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
 
REFERENCES (19)
1.
AOAC International, 2011. Official methods of analysis association of AOAC International. 18th edition. Arlington, VA (USA)
 
2.
Appenroth K-J., Sowjanya Sree K., Böhmc V., Hammann S., Vetterd W., Leiterere M., Jahreis G., 2017. Nutritional value of duckweeds (Lemnaceae) as human food. Food Chem. 217, 266–273, http://dx.doi.org/10.1016/j.fo....
 
3.
Appenroth K-J., Sree K.S., Bog M. et al., 2018. Nutritional value of the duckweed species of the genus Wolffia (Lemnaceae) as human. Food. Front. Chem. 6, 483, http://dx.doi.org/10.3389/fche....
 
4.
Chakrabarti R., Clark W.D., Sharma J.G., Goswami R.K., Shrivastav A.K., Tocher D.R., 2018. Mass production of Lemna minor and its amino acid and fatty acid profiles. Front. Chem. 6, 479, https://doi.org/10.3389/fchem.....
 
5.
Demann J., Petersen F., Dusel G., Bog M., Devlamynck R., Ulbrich A., Olfs H.-W., Westendarp H., 2023. Nutritional value of duckweed as protein feed for broiler chickens – digestibility of crude protein, amino acids and phosphorus. Animals 13, 130, https://doi.org/10.3390/ani130....
 
6.
Hoang P.T.N., Schubert I., 2017. Reconstruction of chromosome rearrangements between the two most ancestral duckweed species Spirodela polyrhiza and S. intermedia. Chromosoma 126, 729–739, https://doi.org/10.1007/s00412....
 
7.
Kumar G., Sharma J.G., Goswami R.K., Shrivastav A.K.., Tocher DR., Kumar N., Chakrabarti R., 2022. Freshwater macrophytes: a potential source of minerals and fatty acids for fish, poultry, and livestock. Front. Nutr. 9, 869425, https://doi.org/10.3389/fnut.2....
 
8.
Ma Y.B., Zhu M., Yu C.J., Wang Y., Liu Y., Li M.L., Sun Y.D., Zhao J.S., Zhou G.K., 2017. Large-scale screening and characterisation of Lemna aequinoctialis and Spirodela polyrhiza strains for starch production. Plant Biol. 20, 357–364, https://doi.org/10.1111/plb.12....
 
9.
Miltko R., Majewska M. P., Wojtak W., Białek M., Kowalik B., Czauderna M., 2024. Comparing the chemical composition of lesser duckweed (Lemna minor L.) grown in natural and laboratory settings. J. Anim. Feed Sci. 33, 357–367, https://doi.org/10.22358/jafs/....
 
10.
Pagliuso D., Grandis A., Fortirer J.S., Camargo P., Floh E.I.S., Buckeridge M.S., 2022. Duckweeds as promising food feedstocks globally. Agronomy, 12, 796, https://doi.org/10.3390/agrono....
 
11.
Said D.S., Chrismadha T., Mayasari N., Widiyanto T., Ramandita A., 2022. Nutritional content and growth ability of duckweed Spirodela polyrhiza on various culture media. IOP Conf. Ser.: Earth Environ. Sci. 1062, 012009, https://doi:10.1088/1755-1315/....
 
12.
Sharma JaiGopal, Clarkb W.D., Kumar S.A., Kumar G.R., Tocherb D.R., Chakrabarti R., 2019. Production potential of greater duckweed Spirodela polyrhiza (L. Schleiden) and its biochemical composition evaluation. Aquaculture. 513, 734419, https://doi.org/10.1016/j.aqua....
 
13.
Smith S.D.P., 2014. The roles of nitrogen and phosphorus in regulating the dominance of floating and submerged aquatic plants in a field mesocosm experiment. Aquat. Bot. 112, 1–9, https://doi.org/10.1016/j.aqua....
 
14.
Sońta M., Rekiel M., Batorska M., 2019. Use of duckweed (Lemna L.) in sustainable livestock production and aquaculture – a review. Ann. Anim. Sci. 19, 257–271, https://doi.org/10.2478/aoas-2....
 
15.
Sree K.S., Appenroth K.J., 2020. Worldwide Genetic Resources of Duckweed: Stock Collections. In: The Duckweed Genomes. Compendium of Plant Genomes. Cao X., Fourounjian P., Wang W., Editors; Springer: Cham; Switzerland AG; pp. 39–46.
 
16.
Tang J., Li Y., Ma J., Cheng J.J., 2015. Survey of duckweed diversity in Lake Chaoand total fatty acid, triacylglycerol, profiles of representative strains. Plant Biol. 17, 1066–1072 https://doi.org/10.1111/plb.12....
 
17.
Xu J., Shen Y., Zheng Y., Smith G., Sun X.S., Wang D., Zhao Y., Zhang W., Li Y. 2021. Duckweed (Lemnaceae) for potentially nutritious human food: A review. Food Rev. Int. 39, 3620–3634, https://doi.org/10.1080/875591....
 
18.
Yu G., Liu H., Venkateshan K., Yan S., Cheng J., Sun X. S., Wang D., 2011. Functional, physiochemical, and rheological properties of duckweed (Spirodela polyrhiza) protein. Transactions of the ASABE. 54, 555–561, https://doi.org/10.13031/2013.....
 
19.
Zhao Z., Shi H.J., Wang M.L., Cui L., Zhao H., Yun Z., 2015. Effect of nitrogen and phosphorus deficiency on transcriptional regulation of genes encoding key enzymes of starch metabolism in duckweed (Landoltia punctata). Plant Physiol. Biochem. 86, 72–81, http://dx.doi.org/10.1016/j.pl... 0981-9428.
 
ISSN:1230-1388
Journals System - logo
Scroll to top