ORIGINAL PAPER
 
KEYWORDS
TOPICS
ABSTRACT
This study was conducted to determine the effect of combining rice bran and rice husk as a substitute ingredient in maize straw silage-based rations on rumen fermentability. The study used a completely randomised design with different proportions of rice husks as a factor. Rice husk was a replacement for rice bran at levels of 0, 10, 20, 30, and 40% in a maize straw silage-based ration (dry matter (DM)). The forage-to-concentrate ratio was 60:40. Measurements included pH, ammonia, total volatile fatty acids, partial, methane and total gas production, conducted after 24 h of incubation, while dry matter digestibility and organic matter digestibility were measured after 48 h of incubation. Data were analysed using one-way ANOVA. The results showed that incrementing rice husk levels in the ration significantly reduced (P < 0.01) its quality. Fermentability, digestibility, total gas and methane production decreased linearly (P < 0.01) with increasing rice husk content. Our findings imply that the addition of rice husks (DM basis) to the ration should not exceed 20%, or the substitution of rice bran with rice husk should not exceed 50%.
ACKNOWLEDGEMENTS
We would like to extend our gratitude to the Rector of the Padjadjaran University for providing the opportunity and funding, and to the Head and Staff of the Ruminant Animal Nutrition Laboratory and Animal Feed Chemistry, Faculty of Animal Husbandry, Padjadjaran University, for their invaluable support in facilitating this research.
FUNDING
This research was funded by the Padjadjaran University under the Padjadjaran University Lecturer Dissertation Research programme, No. 2037/UN6.3.1/PT.00/2024.
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
 
REFERENCES (40)
1.
Abdoun K., Stumpff F., Martens H., 2006. Ammonia and urea transport across the rumen epithelium: a review. Anim. Health Res. Rev. 7, 43–59, https://doi.org/10.1017/S14662....
 
2.
Beg S., Zafar SI., Shah FH., 1986. Rice husk biodegradation by Pleurotus ostreatus to produce a ruminant feed. Agric. Wastes. 17, 15–21, https://doi.org/10.1016/0141-4....
 
3.
Begna R., Urge M., Negesse T., Animut, G., 2019. Chemical composition and in-vitro digestibility of sugarcane bagasse and rice husk treated with three strains of white rot fungi and effective microorganism. J. Anim. Sci. Biotechnol. 35, 71–83, https://doi.org/10.2298/BAH190....
 
4.
Bodas R., Prieto N., García-González R., Andrés S., Giráldez FJ., López S., 2012. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim. Feed Sci. Technol., 176, 78–93, https://doi.org/10.1016/j.anif....
 
5.
Cattaneo L., Lopreiato V., Piccioli-Cappelli F., Trevisi E., Minuti A., 2023. Effect of supplementing live Saccharomyces cerevisiae yeast on performance, rumen function, and metabolism during the transition period in Holstein dairy cows. J. Dairy Sci. 106, 4353–4365, https://doi.org/10.3168/jds.20....
 
6.
Dhanya M.S., 2022. Perspectives of Agro-Waste Biorefineries for Sustainable Biofuels. In: Nandabalan Y.K., Garg V.K., Labhsetwar N.K., Singh A. (Eds) Zero Waste Biorefinery. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-98....
 
7.
Fidriyanto R., Ridwan R., Astuti WD., Rohmatussolihat R., Sari NF., Watman M., Widyastuti Y., 2020. In vitro ruminal fermentation and degradability of rice husk on rice bran substitution. Ann. Bogor. 24, 50-58. https://doi.org/10.14203/ann.b....
 
8.
He S., Yuan Z., Dai S., Wang Z., Zhao S., Wang R., Li Q., Mao H., Wu D., 2024. Intensive feeding alters the rumen microbiota and its fermentation parameters in natural grazing yaks. Front Vet Sci. 11. https://doi.org/10.3389/fvets.....
 
9.
Hindrichsen I.K., Wettstein H.R., Machmüller A., Soliva C.R., Bach Knudsen K.E., Madsen J., Kreuzer M., 2004. Effects of feed carbohydrates with contrasting properties on rumen fermentation and methane release in vitro. Can. J. Anim. Sci., 84, 265–276, https://doi.org/10.4141/A03-09....
 
10.
Jo S.U., Lee S.J., Kim H.S., Eom J.S., Choi Y., Oh D.S., Bae D., Lee S.S., 2022. Effects of oriental medicinal plants on the reduction of methane production mediated by microbial population. Ital. J. Anim. Sci. 21, 522–531, https://doi.org/10.1080/182805....
 
11.
Karakurt I., Aydin G., Aydiner K., 2012. Sources and mitigation of methane emissions by sectors: A critical review. Renew. Energy, 39, 40–48, https://doi.org/10.1016/j.rene....
 
12.
Kearl L.C., 1982. Nutrient Requirements of Ruminants in Developing Countries. International Feedstuffs Institute, Utah State University, Logan. https://digitalcommons.usu.edu....
 
13.
Kyawt Y.Y., Aung M., Xu Y., Zhou Y., Li Y., Sun Z., Zhu W., Cheng, Y., 2024. Methane production and lignocellulosic degradation of wastes from rice, corn and sugarcane by natural anaerobic fungi-methanogens co-culture. World. J. Microbiol. Biotechnol. 40, 109, https://doi.org/10.1007/s11274....
 
14.
Lacorte S., Bono-Blay F., Cortina M., 2012. 1.04 - sample homogenization. Compr. Sampl. Sampl. Prep. 1, 65–84, https://doi.org/10.1016/B978-0....
 
15.
Liu Q., Cao X., Zhuang X., Han W., Guo W., Xiong J., Zhang X., 2017. Rice bran polysaccharides and oligosaccharides modified by Grifola frondosa fermentation: Antioxidant activities and effects on the production of NO. Food Chem. 223, 49–53, https://doi.org/10.1016/j.food....
 
16.
Maftu’ah E., Nursyamsi D., 2015. Potency of various organic materials from swampland as a source of biochar. Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia. 1, 776–781, https://doi.org/10.13057/psnmb....
 
17.
Manlapig JJD., Kawakami S., Matamura M., Kondo M., Ban‐Tokuda T., Matsui H., 2024. Effect of rice bran extract on in vitro rumen fermentation and methane production. Anim. Sci. J. 95, e13923, https://doi.org/10.1111/asj.13....
 
18.
Manzoor A., Pandey V.K., Dar A.H. et al., 2023. Rice bran: Nutritional, phytochemical, and pharmacological profile and its contribution to human health promotion. Food Chem. Adv. 2, 100296, https://doi.org/10.1016/j.foch....
 
19.
Menke K.H., Raab L., Salewski A., Steingass H., Fritz D., Schneider W., 1979. The estimation of the digestibility and metabolizable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. 93, 217–222, https://doi.org/10.1017/S00218....
 
20.
Oghenesuvwe O., Sorhue, UG., Jerome U., Collins O., 2024. Nutrient digestibility, rumen parameters and microbial population of WAD goats fed varying levels of concentrate based diet. Int. J. Agric. For. 14, 18–24, https://doi.org/10.5923/j.ijaf....
 
21.
Preston T.J., 1998. Tropical animal feeding: a manual for research workers. FAO Animal Production and Health Paper. Food and Agriculture Organization of the United Nations, Rome (Italy), https://www.cabidigitallibrary....
 
22.
Rahat Naseer R.N., Hashmi A.S., Zulfiqar-ul-Hassan Z.H., Rehman H., Saima Naveed S.N., Masood F., Tayyab M., 2017. Assessment of feeding value of processed rice husk for Lohi sheep in growing phase. Pak. J. Zool. 49, 1725–1729, https://doi.org/10.17582/journ....
 
23.
Rathert-Williams A.R., McConnell H.L., Salisbury C.M., Lindholm-Perry A.K., Lalman D.L., Pezeshki A., Foote AP., 2023. Effects of adding ruminal propionate on dry matter intake and glucose metabolism in steers fed a finishing ration. J. Anim. Sci. 101, skad072, https://doi.org/10.1093/jas/sk....
 
24.
Roba R.B., Letta M.U., Aychiluhim T.N., Minneeneh G.A., 2022. Intake, digestibility, growth performance and blood profile of rams fed sugarcane bagasse or rice husk treated with Trichoderma viride and effective microorganisms. Heliyon. 8, e11958, https://doi.org/https://doi.or....
 
25.
Rosani U., Hernaman I., Hidayat R., Hidayat D., 2024. The relationship of lignin and crude fiber in rice bran with ultrasonic wave parameters. Adv. Anim. Vet. Sci. 12, 791–801, https://dx.doi.org/10.17582/jo....
 
26.
Sapwarobol S., Saphyakhajorn W., Astina J., 2021. Biological functions and activities of rice bran as a functional ingredient: a review. Nutr. Metab. Insights. 14, https://doi.org/10.1177/117863....
 
27.
Satter M.A., Ara H., Jabin S.A., Abedin N., Azad A.K., Hossain A., Ara U., 2014. Nutritional composition and stabilization of local variety rice bran BRRI-28. Int. J. Anim. Sci. Technol. 3, 306–313, https://citeseerx.ist.psu.edu/....
 
28.
Singh S., Kushwaha B.P., Nag S.K., Mishra A.K., Bhattacharya S., Gupta P.K., Singh A., 2011. In vitro methane emission from Indian dry roughages in relation to chemical composition. Current Sci., 101, 57–65, https://www.jstor.org/stable/2....
 
29.
Siwal S.S., Zhang Q., Devi N., Saini A.K., Saini V., Pareek B., Gaidukovs S., Thakur V.K., 2021. Recovery processes of sustainable energy using different biomass and wastes. Renew. Sustain. Energy Rev. 150, 111483, https://doi.org/10.1016/j.rser....
 
30.
Sun H.Z., Zhou M., Wang O., Chen Y., Liu J.X., Guan L.L., 2020. Multi-omics reveals functional genomic and metabolic mechanisms of milk production and quality in dairy cows. Bioinform. 36, 2530–2537, https://doi.org/10.1093/bioinf....
 
31.
Sun Y.Y., Cheng M., Xu M., Song L.W., Gao M., Hu H.L., 2018. The effects of subacute ruminal acidosis on rumen epithelium barrier function in dairy goats. Small Rumin Res. 169, 1–7, https://doi.org/10.1016/j.smal....
 
32.
Syafrudin S., Nugraha W.D., Matin H.H.A., Saputri E.S., Budiyono B., 2020. The effectiveness of biogas method from rice husks waste: Liquid anaerobic digestion and solid-state anaerobic digestion. IOP Conf. Ser. Earth. Environ. Sci. 448, 12007, https://doi.org/10.1088/1755-1....
 
33.
Tan Z., Liu J., Wang L., 2024. Factors affecting the rumen fluid foaming performance in goat fed high concentrate diet. Front. Vet. Sci. 11, 1299404, https://doi.org/10.3389/fvets.....
 
34.
Tang S.X., He Y., Zhang P.H. et al., 2019. Nutrient digestion, rumen fermentation and performance as ramie (Boehmeria nivea) is increased in the diets of goats. Anim. Feed Sci. Technol. 247, 15–22, https://doi.org/https://doi.or....
 
35.
Tomczak D.J., Samuelson K.L., Jennings J.S., Richeson J.T., 2019. Oral hydration therapy with water and bovine respiratory disease incidence affects rumination behavior, rumen pH, and rumen temperature in high-risk, newly received beef calves. J. Anim. Sci. 97, 2015–2024, https://doi.org/10.1093/jas/sk....
 
36.
Van Dung D., Phung L.D., Ngoan L.D., Roubík H., 2022. Effects of levels of tropical rice husk-derived biochar in diet-based high rice straw on in vitro methane production and rumen fermentation. Biomass Conv. Bioref., https://doi.org/10.1007/s13399....
 
37.
Van Soest P.J., 2018. Nutritional ecology of the ruminant. Cornell University Press. Ithaca, NY (USA).
 
38.
Wang Y., Marx T., Lora J., Phillip LE., McAllister T.A., 2009. Effects of purified lignin on in vitro ruminal fermentation and growth performance, carcass traits and fecal shedding of Escherichia coli by feedlot lambs. Anim. Feed Sci. Technol., 15, 21–31, https://doi.org/10.1016/j.anif....
 
39.
Yanza Y.R., Szumacher-Strabel M., Bryszak M., Gao M., Kolodziejski P., Stochmal A., Slusarczyk S., Patra A.K., Cieslak A., 2018. Coleus amboinicus (Lour.) leaves as a modulator of ruminal methanogenesis and biohydrogenation in vitro. J. Anim. Sci. 96, 4868–4881, https://doi.org/10.1093/jas/sk....
 
40.
Zhang R., Ye H., Liu J., Mao S., 2017. High-grain diets altered rumen fermentation and epithelial bacterial community and resulted in rumen epithelial injuries of goats. Appl. Microbiol. Biotechnol. 101, 6981–6992, https://doi.org/10.1007/s00253....
 
ISSN:1230-1388
Journals System - logo
Scroll to top