SHORT COMMUNICATION
 
KEYWORDS
TOPICS
ABSTRACT
On the one hand, the greater kudu (Tragelaphus strepsiceros) is a strict browser and would therefore be expected to display a ‘moose-type’ digestive physiology with a comparatively low rumen fluid throughput, a low ratio of small particle to fluid mean retention time (MRT) in the reticulorumen (RR), and relatively unstratified RR contents. On the other hand, reports on relatively small salivary glands, susceptibility to negative effects of tannins, and a putative absence of tannin-binding salivary proteins would suggest the greater kudu to be an exceptional browser with a ‘cattle-type’ digestive physiology. We measured MRT in four zoo-kept greater kudu females, which resulted in a MRTparticleRR/MRTfluidRR ratio between 1.07–1.43, well within the range of ‘moose-type’ ruminants and similar to eland (Taurotragus oryx). In this regard, consistent morphophysiological studies on greater kudu are required to resolve the seemingly contradictory findings in this species.
ACKNOWLEDGEMENTS
The authors would like to thank Alina Kloska and Silesian Zoological Garden staff for help with running the study, Heidrun Barleben for marker analyses, and Paweł Górka for his general support and comments on the manuscript.
CONFLICT OF INTEREST
The authors declare that there is no conflict of interest.
METADATA IN OTHER LANGUAGES:
Chinese
扭角林羚 (Tragelaphus strepsiceros) 食糜液和食糜颗粒滞留
比较消化生理学、消化、饲料配方、通过时间、唾液
一方面,扭角林羚作为一个严格的植食动物 (browser animal),因此预计其可能具有瘤胃液含量相对较 低、网胃中小食糜颗粒与食糜液平均停留时间 (MRT) 的比率较低以及网胃食糜相对不分层的“驼鹿型 (moose- type)”消化生理学特点。而另一方面,有关扭角林羚具有相对较小的唾液腺、对单宁的副作用易感以及 公认缺乏单宁结合唾液蛋白的报道又表明它具有“牛型 (cattle-type)”消化生理学特点。本文针对四个动物园 饲养的雌性扭角林羚进行MRT测定,结果表明:网胃食糜颗粒平均滞留时间/网胃食糜液平均滞留时间的比 率在1.07⁓1.43之间,在“驼鹿型”反刍动物的范围内,与大角斑羚(Taurotragus oryx) 相似。就此而言,有必要 对扭角林羚的形态生理学进行持续研究,以解决该物种研究发现中存在的矛盾之处。
REFERENCES (36)
1.
Boomker E.A., 1984. Seasonal variation of in vitro digestibility in the kudu, Tragelaphus strepsiceros. Can. J. Anim. Sci. 64 (Suppl.), 208–209, https://doi.org/10.4141/cjas84....
 
2.
Chinomona R.R., Gandiwa E., Muposhi V.K., Muboko N., Moyo M.S., 2018. Forage preference of the greater kudu (Tragelaphus strepsiceros) in a miombo woodland adjacent to Umfurudzi Park, Zimbabwe. Cogent Environ. Sci. 4, 1559461, https://doi.org/10.1080/233118....
 
3.
Clauss M., Fritz J., Bayer D., Nygren K., Hammer S., Hatt J.-M., Südekum K.-H., Hummel J., 2009a. Physical characteristics of rumen contents in four large ruminants of different feeding type, the addax (Addax nasomaculatus), bison (Bison bison),red deer (Cervus elaphus) and moose (Alces alces). Comp. Biochem. Physiol. A 152, 398–406, https://doi.org/10.1016/j.cbpa....
 
4.
Clauss M., Hofmann R.R., 2014. The digestive system of ruminants, and peculiarities of (wild) cattle. In: M. Melletti, J. Burton (Editors). Ecology, evolution and behaviour of wild cattle: implications for conservation. Cambridge University Press, Cambridge UK, pp.57–62, https://doi.org/10.1017/CBO978....
 
5.
Clauss M., Hofmann R.R., Fickel J., Streich W.J., Hummel J., 2009b.The intraruminal papillation gradient in wild ruminants of different feeding types: implications for rumen physiology. J.Morphol. 270, 929–942, https://doi.org/10.1002/jmor.1....
 
6.
Clauss M., Hummel J., Streich W.J., 2006. The dissociation of the fluid and particle phase in the forestomach as a physiological characteristic of large grazing ruminants: an evaluation of available, comparable ruminant passage data. Eur. J. Wildl. Res. 52, 88–98, https://doi.org/10.1007/s10344....
 
7.
Clauss M., Hofmann R., Streich W., Fickel J., Hummel J., 2008. Higher masseter muscle mass in grazing than in browsing ruminants. Oecologia 157, 377–385, https://doi.org/10.1007/s00442....
 
8.
Clauss M., Hume I.D., Hummel J., 2010. Evolutionary adaptations of ruminants and their potential relevance for modern production systems. Animal 4, 979–992, https://doi.org/10.1017/S17517....
 
9.
Codron D., Clauss M., 2010. Rumen physiology constrains diet niche: linking digestive physiology and food selection across wild ruminant species. Can. J. Zool. 88, 1129–1138, https://doi.org/10.1139/Z10-07....
 
10.
Codron D., Codron J., Lee-Thorp J.A., Sponheimer M., De Ruiter D., Sealy J., Grant R., Fourie N., 2007. Diets of savanna ungulates from stable carbon isotope composition of faeces. J. Zool. 273, 21–29, https://doi.org/10.1111/j.1469....
 
11.
Dittmann M.T., Runge U., Ortmann S., Lang R.A., Moser D., Galeffi C., Schwarm A., Kreuzer M., Clauss M., 2015. Digesta retention patterns of solutes and different-sized particles in camelids compared with ruminants and other foregut fermenters. J.Comp. Physiol. Part B 185, 559–573, https://doi.org/10.1007/s00360....
 
12.
Ehrlich C., Codron D., Hofmann R.R., Hummel J., Clauss M., 2019.Comparative omasum anatomy in ruminants: relationships with natural diet, digestive physiology, and general considerations on allometric investigations. J. Morphol. 280, 259–277, https://doi.org/10.1002/jmor.2....
 
13.
Estes R.D., 1991. The behaviour guide to African mammals including hoofed mammals, carnivores, primates. Russell Friedman Books, Johannesburg.
 
14.
Górka P., Przybyło M., Kański J., Kloska A., 2016. Effect of pelleted cereal-based feed used in the diet on feed intake, eating behavior, rumination and nutrient digestibility in antelope sitatunga (Tragelaphus spekii). J. Anim. Feed Sci. 25,125–133, https://doi.org/10.22358/jafs/....
 
15.
Gray S.S., Simpson T.R., Baccus J.T., Manning R.W., Schwertner T.W., 2006. Seasonal diet and foraging preference of greater kudu Tragelaphus strepsiceros in the Llano Uplift of Texas. Wildl. Biol. 13, 75–83, https://doi.org/10.2981/0909-6...
 
16.
Hejcmanová P., Ortmann S., Stoklasová L., Clauss M., 2020. Digesta passage in common eland (Taurotragus oryx) on a monocot or a dicot diet. Comp. Biochem. Physiol. Part A 246, 110720, https://doi.org/10.1016/j.cbpa....
 
17.
Hertaeg J., Sauer C., Bertelsen M.F., Hammer S., Lund P., Weisbjerg M.R., Clauss M., 2021. Physical characteristics of forestomach contents from two nondomestic small ruminants, the blackbuck (Antilope cervicapra) and the Arabian sand gazelle (Gazella subgutturosa marica). Comp. Biochem. Physiol. Part A 257, 110941, https://doi.org/10.1016/j.cbpa....
 
18.
Hoffman L.C., Mostert A.C., Kidd M., Laubscher L.L., 2009. Meat quality of kudu (Tragelaphus strepsiceros) and impala (Aepyceros melampus): Carcass yield, physical quality and chemical composition of kudu and impala Longissimus dorsi muscle as affected by gender and age. Meat Sci. 83, 788–795, https://doi.org/10.1016/j.meat....
 
19.
Hofmann R.R., 1989. Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78, 443–457, https://doi.org/10.1007/BF0037....
 
20.
Hofmann R.R., Streich W.J., Fickel J., Hummel J., Clauss M., 2008. Convergent evolution in feeding types: Salivary gland mass differences in wild ruminant species. J. Morphol. 269, 240–257, https://doi.org/10.1002/jmor.1....
 
21.
Jumars P.A., 2000. Animal guts as nonideal chemical reactors: partial mixing and axial variation in absorption kinetics. Am. Nat. 155, 544–555, https://doi.org/10.1086/303334.
 
22.
Lechner I., Barboza P., Collins W., Fritz J., Günther D., Hattendorf B., Hummel J., Südekum K.-H., Clauss M., 2010. Differential passage of fluids and different-sized particles in fistulated oxen (Bos primigenius f. taurus), muskoxen (Ovibos moschatus), reindeer (Rangifer tarandus) and moose (Alces alces): rumen particle size discrimination is independent from contents stratification. Comp. Biochem. Physiol. Part A 155, 211–222, https://doi.org/10.1016/j.cbpa....
 
23.
Lechner-Doll M., Rutagwenda T., Schwartz H.J., Schultka W., von Engelhardt W., 1990. Seasonal changes of ingesta mean retention time and forestomach fluid volume in indigenous camels, cattle, sheep and goats grazing in a thornbush savanna pasture in Kenya. J. Agric. Sci. 115, 409–420, https://doi.org/10.1017/S00218....
 
24.
Magwedere K., Hoffman L.C., Dziva F., Hemberger Y.M., Sithole F., 2013. Investigating the contributing factors to postmortem pH changes in springbok, eland, red hartebeest and kudu edible offal., J. S. Afr. Vet. Ass. 84, 1–7, https://doi.org/10.4102/ jsava.v84i1.919.
 
25.
Makhado R.A., Curlewis B.J., Luus-Powell W.J., Potgieter M.J., 2020. Forbs and herbs diet of the Tragelaphus strepsiceros at Musina Nature Reserve, Limpopo Province, South Africa. Afr. J. Ecol. 58, 897–901, https://doi.org/10.1111/aje.12....
 
26.
Owen-Smith N., Cooper S.M., 1989. Nutritional ecology of a browsing ruminant, the kudu (Tragelaphus strepsiceros), through the seasonal cycle. J. Zool. 219, 29–43, https://doi.org/10.1111/j.1469....
 
27.
Przybyło M., Hummel J., Ortmann S. et al., 2019. Digesta passage in nondomestic ruminants: separation mechanisms in ‘moosetype’ and ‘cattle-type’ species, and seemingly atypical browsers. Comp. Biochem. Physiol. Part A 235, 180–192, https://doi.org/10.1016/j.cbpa....
 
28.
Renecker L.A., Hudson R.J., 1990. Digestive kinetics of moose, wapiti and cattle. Anim. Prod. 50, 51–61, https://doi.org/10.1017/S00033....
 
29.
Robbins C.T., Spalinger D.E., Van Hoven W., 1995. Adaptations of ruminants to browse and grass diets: are anatomicalbased browser-grazer interpretations valid? Oecologia 103, 208–213, https://doi.org/10.1007/BF0032....
 
30.
Sauer C., Clauss M., Bertelsen M.F., Weisbjerg M.R., Lund P., 2017. Rumen content stratification in the giraffe (Giraffa camelopardalis). Comp. Biochem. Physiol. Part A 203, 69–76,https://doi.org/10.1016/j.cbpa....
 
31.
Schwarm A., Ortmann S., Wolf C., Clauss M., 2009. No distinct difference in the excretion of large particles of varying size in a wild ruminant, the banteng (Bos javanicus). Eur. J. Wildl. Res. 55, 531–533, https://doi.org/10.1007/s10344....
 
32.
Taylor L.A., Schwitzer C., Owen-Smith N., Kreuzer M., Clauss M., 2013. Feeding practices for captive greater kudus (Tragelaphus strepsiceros) in UK collections as compared to diets of freeranging specimens. J. Zoo Aquar. Res. 1, 7–13, https://doi.org/10.5167/uzh-79...
 
33.
Thielemans M.F., François E., Bodart C., Thewis A., 1978. Gastrointestinal transit in the pig: measurement using radioactive lanthanides and comparison with sheep (in French). Ann. Biol. Anim. Biochim. Biophys. 18, 237–247, https://doi.org/10.1051/rnd:19....
 
34.
Van Hoven W., 1991. Mortalities in kudu populations related to chemical defence in trees. J. Afr. Zool. 105, 141–145.
 
35.
Ward D., Schmitt M.H., Shrader A.M., 2020. Are there phylogenetic differences in salivary tannin-binding proteins between browsers and grazers, and ruminants and hindgut fermenters? Ecol. Evol. 10, 10426–10439, https://doi.org/10.1002/ece3.6....
 
36.
Wilson D.E., Hirst S.M., Ellis R.P., 1977. Determination of feeding preferences in wild ruminants from trocar samples. J. Wildl. Manage. 41, 70–75, https://doi.org/10.2307/380009....
 
 
CITATIONS (1):
1.
Fluid and particle retention in a small New World and a small Old World cervid, the southern pudu (Pudu puda) and Reeves's muntjac (Muntiacus reevesi)
Marcin Przybyło, Gracja Krajda, Łukasz Różański, Grzegorz Rolik, Sylvia Ortmann, Paweł Górka, Marcus Clauss
Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
 
ISSN:1230-1388
Journals System - logo
Scroll to top