ORIGINAL PAPER
Genotype and protein level interaction in growth traits of meat-type quail through reaction norm models
 
More details
Hide details
1
Federal University of Viçosa, Viçosa, 36570-900, Brazil
 
2
Federal University of Ceará, Campus do Pici, Fortaleza - CE, 60020-181, Brazil
 
3
Federal Institute of Education, Science and Technology of Goiano, Morrinhos - GO, 75650-000, Brazil
 
4
University of Liège, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, B-5030 Gembloux, Belgium
 
 
Publication date: 2017-11-24
 
 
Corresponding author
R. Reis Mota   

University of Liège, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, B-5030 Gembloux, Belgium
 
 
J. Anim. Feed Sci. 2017;26(4):333-338
 
KEYWORDS
TOPICS
ABSTRACT
One possible strategy to optimize breeding programmes in terms of feed costs is selecting animals based on their genetic performance over protein levels (PL). A genotype and environment (G×E) interaction in which the gradual environmental changes are represented by the respective PL is such a strategy. Reaction norm models (RNM) are suitable to perform these analyses, since they enable to evaluate genetic differences among animals as well as variance components and heritability estimates over PL. The aim of the study was to investigate the G and PL interaction in two meat-type quail lines (UFV1 and UFV2) for their body weight at day 28 (BW28) and 35 (BW35) of age by using RNM. Diets were composed in order to have different PL (22, 23, 24, 25, 26, 27, 28 and 29%) but the same metabolizable energy (2900 kcal) by keeping constant amino acids : lysine ratio for animal performance. The data set contained 970 and 410 animals from UFV1 and UFV2 lines, respectively. Several RNM (with different Legendre polynomial orders and residual variance classes) were compared via Akaike (AIC) and Schwarz Bayesian (BIC) information criteria. The RNM outperformed (lower AIC and BIC values) the traditional model disregarding G×E and suggested G×PL interaction for BW28 and BW35. The observed moderate-to-high heritabilities increased over PL, thus proving the existence of G×PL for growth traits in meat-type quail.
REFERENCES (19)
1.
Akbas Y., Takma C., Yaylak E., 2004. Genetic parameters for quail body weights using a random regression model. S. Afr. J. Anim. Sci. 34, 104–109, https://doi.org/10.4314/sajas.....
 
2.
Alkan S., Karabağ K., Galiç A., Karsli T., Balcioğlu M.S., 2010. Determination of body weight and some carcass traits in Japanese quails (Coturnix coturnix japonica) of different lines. Kafkas Univ. Vet. Fak. Derg. 16, 277–280, https://doi.org/10.9775/kvfd.2....
 
3.
Beck P., Piepho H.-P., Rodehutscord M., Bennewitz J., 2016. Inferring relationships between phosphorus utilization, feed per gain, and body weight gain in an F2 cross of Japanese quail using recursive models. Poult. Sci. 95, 764–773, https://doi.org/10.3382/ps/pev....
 
4.
Caetano G.d.C., Mota R.R., Silva D.d.A., de Oliveira H.R., Viana J.M.S., de Siqueira O.H.G.B.D., Freitas P.H.F., e Silva F.F., 2017. Bayesian estimation of genetic parameters for individual feed conversion and body weight gain in meat quail. Livest. Sci. 200, 76–79, https://doi.org/10.1016/j.livs....
 
5.
Calus M.P.L., Veerkamp R.F., 2003. Estimation of environmental sensitivity of genetic merit for milk production traits using a random regression model. J. Dairy Sci. 86, 3756–3764, https://doi.org/10.3168/jds.S0....
 
6.
Calus M.P.L., Janss L.L.G., Veerkamp R.F., 2006. Genotype by environment interaction for somatic cell score across bulk milk somatic cell count and days in milk. J. Dairy Sci. 89, 4846–4857, https://doi.org/10.3168/jds.S0....
 
7.
Falconer D.S., Mackay T.F.C., 1996. Introduction to Quantitative Genetics. 4th Edition. Longmans Green. Harlow, Essex (UK).
 
8.
Gienapp P., Laine V.N., Mateman A.C., van Oers K., Visser M.E., 2017. Environment-dependent genotype-phenotype associations in avian breeding time. Front. Genet. 8, 102, https://doi.org/10.3389/fgene.....
 
9.
Gonçalves F.M., Pires A.V., Pereira I.G., Drumond E.S.C., Felipe V.P.S., Pinheiro S.R.F., 2012. Genetic evaluation of European quails by random regression models. Rev. Bras. Zootecn. 41, 2005–2011, https://doi.org/10.1590/S1516-....
 
10.
Husby A., Kawakami T., Rönnegård L., Smeds L., Ellegren H., Qvarnström A., 2015. Genome-wide association mapping in a wild avian population identifies a link between genetic and phenotypic variation in a life-history trait. Proc. R. Soc. Lond. Ser. B – Biol. Sci. 282, 20150156, https://doi.org/10.1098/rspb.2....
 
11.
Kause A., van Dalen S., Bovenhuis H., 2012. Genetics of ascites resistance and tolerance in chicken: a random regression approach. G3 – Genes Genomes Genet. 2, 527–535, https://doi.org/10.1534/g3.112....
 
12.
Kolmodin R., Strandberg E., Madsen P., Jensen J., Jorjani H., 2002. Genotype by environment interaction in Nordic dairy cattle studied using reaction norms. Acta Agric. Scand. Sect. A – Anim. Sci. 52, 11–24, https://doi.org/10.1080/090647....
 
13.
Meyer K., 2007. WOMBAT – a tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML). J. Zhejiang Univ. – SCI. B 8, 815–821, https://doi.org/10.1631/jzus.2....
 
14.
Mota R.R., Tempelman R.J., Lopes P.S., Aguilar I., Silva F.F., Cardoso F.F., 2016. Genotype by environment interaction for tick resistance of Hereford and Braford beef cattle using reaction norm models. Genet. Sel. Evol. 48, 3, https://doi.org/10.1186/s12711....
 
15.
NRC, 1994. Nutrient Requirements of Poultry: 9th Revised Edition. The National Academies Press. Washington, DC (USA), https://doi.org/10.17226/2114.
 
16.
Schaeffer L.R., 2004. Application of random regression models in animal breeding. Livest. Prod. Sci. 86, 35–45, https://doi.org/10.1016/S0301-....
 
17.
Silva L.P., Ribeiro J.C., Crispim A.C., Silva F.G, Bonafé C.M., Silva F.F., Torres R.A., 2013. Genetic parameters of body weight and egg traits in meat-type quail. Livest. Sci. 153, 27–32, https://doi.org/10.1016/j.livs....
 
18.
Streit M., Reinhard F., Thaller G., Bennewitz J., 2012. Reaction norms and genotype-by-environment interaction in the German Holstein dairy cattle. J. Anim. Breed. Genet. 129, 380–389, https://doi.org/10.1111/j.1439....
 
19.
Varkoohi S., Moradi Shahr Babak M., Pakdel A., Nejati Javaremi A., Zaghari M., Kause A., 2010. Response to selection for feed conversion ratio in Japanese quail. Poult. Sci. 89, 1590–1598, https://doi.org/10.3382/ps.201....
 
 
CITATIONS (2):
1.
Opportunities and challenges of phenomics applied to livestock and aquaculture breeding in South America
Ventura Vieira, e Fonseca, Yáñez Manuel, Luiz Brito
Animal Frontiers
 
2.
Genotype–environment interaction and sexual dimorphism in the genetic evaluation of yearling weight in Simmental cattle raised in Brazil
G. Moura, C.D.S. Arce, J. Santos, D.J.A. Santos, R. Aspilcueta-Borquis, N. Pegolo, A. Gomide, L. Marques, H. Oliveira, Neto Araujo
The Journal of Agricultural Science
 
ISSN:1230-1388
Journals System - logo
Scroll to top