ORIGINAL PAPER
 
All raw data obtained in this study are deposited in an official repository (https://doi.org/10.18150/UVAOTO).
KEYWORDS
TOPICS
ABSTRACT
This study aimed to evaluate the validity of estimated apparent metabolizable energy (AME) regression models for Hermetia illucens (HI) larval fat in broiler chicken diets during various feeding periods. Additionally, it investigated the effects of HI larval fat on selected serum biochemical, immunological, and humoral indices. The experiment involved 300 7-day-old male Ross 308 chicks assigned to two dietary groups (15 replicate pens). The trial lasted 28 days and the following treatments were applied: a basal diet enriched with soybean oil (SO) or larval fat (HI) as the sole source of dietary fat energy, respectively. To obtain an equal energy value of both diets, the AME values for SO and HI were set as follow: 34.2 and 37.54 MJ/kg (7–14 days), 38.4 and 37.72 MJ/kg (15–28 days), and 37.1 and 37.70 MJ/kg (29–35 days), respectively. No differences in body weight gain, feed intake, or feed conversion ratio were observed between the treatments. However, increased coeffi cients of apparent ileal digestibility (CAID) of crude protein and apparent ileal digestible energy (AIDE), with elevated lipase activity, were recorded in the HI treatment. The inclusion of insect fat led to reduced serum immunoglobulin G and thyroxine (T4) concentrations. Moreover, the HI group showed a decreasing trend in aspartate aminotransferase, free T4, and interleukin 6 levels. In conclusion, the regression models for HI larval fat used in broiler diets proved to be effective. Additionally, insect fat demonstrated superiority over SO in promoting favourable CAID of crude protein and AIDE. Furthermore, HI may contribute to improved liver function and immune status of birds, as well as affect thyroid hormone metabolism.
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
 
REFERENCES (52)
1.
Amer S.A., Gouda A., Saleh G.K., Nassar A.H., Abdel-Warith A.-W. A., Younis E.M., Altohamy D.E., Kilany M.S., Davies S.J., Omar A.E., 2023. Dietary frankincense (Boswellia serrata) oil modulates the growth, intestinal morphology, the fatty acid composition of breast muscle, immune status, and immunoexpression of CD3 and CD20 in broiler chickens. Animals 13, 971, https://doi.org/10.3390/ani130....
 
2.
AOAC International, 2005. Official Methods of Analysis of AOAC International. 18th Edition. Gaithersburg, MD (USA).
 
3.
Attivi K., Mlaga K.G., Agboka K., Tona K., Kouame Y.A.E., Lin H., Tona K., 2022. Effect of fish meal replacement by black Soldier Fly (Hermetia illucens) larvae meal on serum biochemical indices, thyroid hormone and zootechnical performance of laying chickens. J. Appl. Poult. Res. 31, 100275, https://doi.org/10.1016/j.japr....
 
4.
Aviagen, 2018. Ross broiler management handbook. Aviagen, Ltd. Hunstville, AL (USA).
 
5.
Bayraktar B., Tekce E., Bayraktar S., Boyuk G., Takma C., Aksakal V., Genc M., Kaya H., Ulker U, Gurbuz A.B., 2023. Investigation of endocrine response of thyroid and intestinal and adipose tissues due to the addition of Moringa oleifera essential oil in diet for quails exposed to heat stress. Rev. Bras. Zootec. 52, e20210040, https://doi.org/10.37496/rbz52....
 
6.
Beckford R.C., Ellestad L.E., Proszkowiec-Weglarz M., Farley L., Brady K., Angel R., Liu H.-C., Porter T.E., 2020. Effects of heat stress on performance, blood chemistry, and hypothalamic and pituitary mRNA expression in broiler chickens. Poult. Sci. 99, 6317–6325, https://doi.org/10.1016/j.psj.....
 
7.
Benzertiha A., Kierończyk B., Rawski M., Kołodziejski P., Bryszak M., Józefiak D., 2019. Insect oil as an alternative to palm oil and poultry fat in broiler chicken nutrition. Animals 9, 116, https://doi.org/10.3390/ani903....
 
8.
Benzertiha A., Kierończyk B., Rawski M., Mikołajczak Z., Urbański A., Nogowski L., Józefiak D., 2020. Insect fat in animal nutrition - a review. Ann. Anim. Sci. 20, 1217–40, https://doi.org/10.2478/aoas-2....
 
9.
Bortoluzzi C., Perez-Calvo E., Olsen P.B., van der Vaart S., van Eerden E., Schmeisser J., Eising I., Segobola P., Sorbara J.-O.B., 2023. Effect of microbial muramidase supplementation in diets formulated with different fiber profiles for broiler chickens raised under various coccidiosis management programs. Poult. Sci. 102, 102955, https://doi.org/10.1016/j.psj.....
 
10.
Dabbou S., Ferrocino I., Gasco L. et al., 2020. Antimicrobial effects of black soldier fly and yellow mealworm fats and their impact on gut microbiota of growing rabbits. Animals 10, 1292, https://doi.org/10.3390/ani100....
 
11.
Dabbou S., Lauwaerts A., Ferrocino I. et al., 2021. Modified black soldier fly larva fat in broiler diet: Effects on performance, carcass traits, blood parameters, histomorphological features and gut microbiota. Animals 11, 1837, https://doi.org/10.3390/ani110....
 
12.
Del Alamo A.G., De Los Mozos J., Van Dam J.T.P., De Ayala P.P., 2007. The use of short and medium chain fatty acids as an alternative to antibiotic growth promoters in broilers infected with malabsorption syndrome. 16th European Symposium on Poultry Nutrition. pp. 317–320.
 
13.
Duntas L.H., Brenta G., 2018. A renewed focus on the association between thyroid hormones and lipid metabolism. Front. Endocrinol. 9, 511, https://doi.org/10.3389/fendo.....
 
14.
El-Maaty H.A., Sherif S., Taha A.E., Al-Otaibi A.M., Othman S.I., Allam A.A., Mahrose K., 2023. Effects of housing systems and feed additive on growth, carcass traits, liver function, oxidative status, thyroid function, and immune parameters of broilers. Poult. Sci. 102, 103121, https://doi.org/10.1016/j.psj.....
 
15.
European Union, 2007. Council Directive 2007/43/EC of 28 June 2007 laying down minimum rules for the protection of chickens kept for meat production. Off. J. Eur. Union. 182, 19–28.
 
16.
European Union, 2010. EU Directive 2010/63/EU of the European Parliament and the Council of 22 September 2010. Prot. Anim. Used Sci. Purp. Off. J. EU 276, 33–79.
 
17.
Flis M., Józefiak D., Bielak A., Kasperek K., Kierończyk B., Grela E.R., 2024. Insects as a natural component of pheasant diets: effects of full-fat Hermetia illucens meal on egg production and quality, hatchability, and selected physicochemical egg indices. J. Anim. Feed. Sci. 33, 217–225, https://doi.org/10.22358/jafs/....
 
18.
Gasco L., Renna M., Bellezza Oddon S., Rezaei Far A., Naser El Deen S., Veldkamp T., 2023. Insect meals in a circular economy and applications in monogastric diets. Anim. Front. 13, 81–90, https://doi.org/10.1093/af/vfa....
 
19.
Ghanima M.M.A., Abd El-Hack M.E., Al-Otaibi A.M., Nasr S., Almohmadi N.H., Taha A.E., Jaremko M., El-Kasrawy N.I., 2023. Growth performance, liver and kidney functions, blood hormonal profile, and economic efficiency of broilers fed different levels of threonine supplementation during feed restriction. Poult. Sci. 102, 102796, https://doi.org/10.1016/j.psj.....
 
20.
Hatab M.H., Ibrahim N.S., Sayed W.A., Sabic E.M., 2020. Potential value of using insect meal as an alternative protein source for Japanese quail diet. Braz. J. Poult. Sci. 22, https://doi.org/10.1590/1806-9....
 
21.
Hemmati H., Zeinoaldini S., Zare Shahneh A., Kazemizadeh A., Yousefi A., 2019. Investigation of changes in thyroid hormones and blood metabolites in broiler breeder hens after peak production. Anim. Prod. 21, 291–300, https://doi.org/10.22059/jap.2....
 
22.
Heuel M., Sandrock C., Leiber F., Mathys A., Gold M., Zurbrugg C., Gangnat I.D.M., Kreuzer M., Terranova M., 2021. Black soldier fly larvae meal and fat can completely replace soybean cake and oil in diets for laying hens. Poult. Sci. 100,101034, https://doi.org/10.1016/j.psj.....
 
23.
INRAE-CIRAD-AFZ, 2022. INRAE-CIRAD-AFZ − Tables of composition and nutritional values of feed materials. Retrieved on 25 March 2024 from https://www.feedtables.com.
 
24.
Jahanpour H., Chamani M., Seidavi A.R., Sadeghi A.A., Aminafschar M., 2020. Effect of intensity and duration of quantitative feed restriction and dietary coenzyme Q10 on growth performance, carcass characteristics, blood constitutes, thyroid hormones, microbiota, immunity, and ascites syndrome in broiler chickens. Poult. Sci. J. 8, 145–162, https://doi.org/10.22069/psj.2....
 
25.
Józefiak D., Kierończyk B., Rawski M., Hejdysz M., Rutkowski A., Engberg R.M., Højberg O., 2014. Clostridium perfringens challenge and dietary fat type affect broiler chicken performance and fermentation in the gastrointestinal tract. Animal 8, 912–922, https://doi.org/10.1017/S17517....
 
26.
Józefiak D., Świątkiewicz S., Kierończyk B., Rawski M., Długosz J., Engberg R.M., Højberg O., 2016. Clostridium perfringens challenge and dietary fat type modifies performance, microbiota composition and histomorphology of the broiler chicken gastrointestinal tract. Eur. Poult. Sci. 80, https://doi.org/10.1399/eps.20....
 
27.
Kierończyk B., Pruszyńska-Oszmałek E., Światkiewicz S., Rawski M., Długosz J., Engberg E.M. Józefiak D., 2016. The nisin improves broiler chicken growth performance and interacts with salinomycin in terms of gastrointestinal tract microbiota composition. J. Anim. Feed. Sci. 25, 309–316, https://doi.org/10.22358/jafs/....
 
28.
Kierończyk B., Rawski M., Mikołajczak Z., Homska N., Jankowski J., Ognik K., Józefiak A., Mazurskiewicz J., Józefiak D., 2022a. Available for millions of years but discovered through the last decade: Insects as a source of nutrients and energy in animal diets. Anim. Nutr. 11, 60–79, https://doi.org/10.1016/j.anin....
 
29.
Kierończyk B., Rawski M., Mikołajczak Z., Leciejewska N., Józefiak D., 2022b. Hermetia illucens fat affects the gastrointestinal tract selected microbial populations, their activity, and the immune status of broiler chickens. Ann. Anim. Sci. 22, 663–75, https://doi.org/10.2478/aoas-2....
 
30.
Kierończyk B., Rawski M., Mikołajczak Z., Szymkowiak P., Stuper-Szablewska K., Józefiak D., 2023. Black soldier fly larva fat in broiler chicken diets affects breast meat quality. Animals 13, 1137, https://doi.org/10.3390/ani130....
 
31.
Kierończyk B., Rawski M., Stuper-Szablewska K., Józefiak D., 2022. First report of the apparent metabolisable energy value of black soldier fly larvae fat used in broiler chicken diets. Animal 16, 100656, https://doi.org/10.1016/j.anim....
 
32.
Kierończyk B., Sypniewski J., Mikołajczak Z., Rawski M., Pruszyńska-Oszmałek E., Sassek M., Kołodziejski P., Józefiak D., 2022c. Replacement of soybean oil with coldextracted fat from Hermetia illucens in young turkey diets: Effects on performance, nutrient digestibility, selected organ measurements, meat and liver tissue traits, intestinal microbiota modulation, and physiological. Anim. Feed Sci. Technol. 286, 115210, https://doi.org/10.1016/j.anif....
 
33.
Kierończyk B., Sypniewski J., Rawski M., Czekała W., Świątkiewicz S., Józefiak D., 2020. From waste to sustainable feed material: the effect of Hermetia illucens oil on the growth performance, nutrient digestibility, and gastrointestinal tract morphometry of broiler chickens. Ann. Anim. Sci. 20, 157–77, https://doi.org/10.2478/aoas-2....
 
34.
Kim B., Bang H.T., Kim K.H., Kim M.J., Jeong J.Y., Chun J.L., Ji S.Y., 2020a. Evaluation of black soldier fly larvae oil as a dietary fat source in broiler chicken diets. J. Anim. Sci. Technol. 62, 187–197, https://doi.org/10.5187/jast.2....
 
35.
Kim Y.B., Kim D.-H., Jeong S.-B., Lee J.-W., Kim T.-H., Lee H.-G., Lee K.-W., 2020b. Black soldier fly larvae oil as an alternative fat source in broiler nutrition. Poult. Sci. 99, 3133–3143, https://doi.org/10.1016/j.psj.....
 
36.
Kim B., Bang H.T., Jeong J.Y., Kim M., Kim K.H., Chun J.L., Ji S.Y., 2021. Effects of dietary supplementation of black soldier fly (Hermetia illucens) larvae oil on broiler health. J. Poult. Sci. 58, 222–9, https://doi.org/10.2141/jpsa.0....
 
37.
Li L., Lu Z., Wang Y., Yang Y., Wang H., Ma H., 2024. Genistein alleviates chronic heat stress-induced lipid metabolism disorder and mitochondrial energetic dysfunction by activating the GPR30-AMPK-PGC-1α signaling pathways in the livers of broiler chickens. Poult. Sci. 103, 103251, https://doi.org/10.1016/j.psj.....
 
38.
Myers W.D., Ludden P.A., Nayigihugu V., Hess B.W., 2004. Technical note: a procedure for the preparation and quantitative analysis of samples for titanium dioxide. J. Anim. Sci. 82, 179–183, https://doi.org/10.2527/2004.8....
 
39.
Nassar F.S., Alsahlawi A.M., Abbas A.O., Alaqil A.A., Kamel N.N., Abdelwahab A.M., 2023. Impact of dietary inclusion of black soldier fly larvae (Hermetia illucens) as a replacement for soybean-corn ingredients on egg production, physiological status, and economic efficiency of laying hens. Adv. Anim. Vet. Sci. 11, 295–304, https://doi.org/10.17582/journ....
 
40.
Oladokun S., Adewole D., 2023. The effect of Bacillus subtilis and its delivery route on hatch and growth performance, blood biochemistry, immune status, gut morphology, and microbiota of broiler chickens. Poult. Sci. 102, 102473, https://doi.org/10.1016/j.psj.....
 
41.
Patterson P.H., Acar N., Ferguson A.D., Trimble L.D., Sciubba H.B., Koutsos E.A., 2021. The impact of dietary Black Soldier Fly larvae oil and meal on laying hen performance and egg quality. Poult. Sci. 100, 101272, https://doi.org/10.1016/j.psj.....
 
42.
Ravindran V., Tancharoenrat P., Zaefarian F., Ravindran G., 2016. Fats in poultry nutrition: Digestive physiology and factors influencing their utilisation. Anim. Feed. Sci. Technol. 213, 1–21, https://doi.org/10.1016/j.anif....
 
43.
Schäfer L., Grundmann S.M., Maheshwari G., Höring M., Liebisch G., Most E., Eder K., Ringseis R., 2023. Effect of replacement of soybean oil by Hermetia illucens fat on performance, digestibility, cecal microbiome, liver transcriptome and liver and plasma lipidomes of broilers. J. Anim. Sci. Biotechnol. 14, 20, https://doi.org/10.1186/s40104....
 
44.
Schiavone A., Cullere M., De Marco M., et al., 2017. Partial or total replacement of soybean oil by black soldier fly larvae (Hermetia illucens L.) fat in broiler diets: Effect on growth performances, feed-choice, blood traits, carcass characteristics and meat quality. Ital. J. Anim. Sci. 16, 93–100, https://doi.org/10.1080/182805....
 
45.
Schiavone A., Dabbou S., De Marco M. et al., 2018. Black soldier fly larva fat inclusion in finisher broiler chicken diet as an alternative fat source. Animal 12, 2032–2039, https://doi.org/10.1017/S17517....
 
46.
Short F., Gorton P., Wiseman J., Boorman K.N., 1996. Determination of titanium dioxide added as an inert marker in chicken digestibility studies. Anim. Feed Sci. Techol. 59, 215–221, https://doi.org/10.1016/0377-8....
 
47.
Skomorucha I., Sosnówka-Czajka E., 2017. Physiological parameters in broiler chickens reared under different housing systems during a period of high temperatures. Acta. Sci. Pol. Zootechnica 16, 25–34, https://doi.org/10.21005/asp.2....
 
48.
Sosa D.A.T., Fogliano V., 2017. Potential of insect-derived ingredients for food applications. In: V.D.C. Shields (Editor). Insect Physiology and Ecology. IntechOpen Ltd. London (UK), https://doi.org/10.5772/67318.
 
49.
Svihus B., 2011. The gizzard: function, influence of diet structure and effects on nutrient availability. Worlds Poult. Sci. J. 67, 207–24, https://doi.org/10.1017/S00439....
 
50.
Sypniewski J., Kierończyk B., Benzertiha A., Mikołajczak Z., Pruszyńska-Oszmałek E., Kołodziejski P., Sassek M., Rawski M., Czekała W., Józefiak D., 2020. Replacement of soybean oil by Hermetia illucens fat in turkey nutrition: effect on performance, digestibility, microbial community, immune and physiological status and final product quality. Br. Poult. Sci. 61, 294–302, https://doi.org/10.1080/000716....
 
51.
Tancharoenrat P., Ravindran V., Zaefarian F., Ravindran G., 2013. Influence of age on the apparent metabolisable energy and total tract apparent fat digestibility of different fat sources for broiler chickens. Anim. Feed Sci. Technol. 186, 186–192, https://doi.org/10.1016/j.anif....
 
52.
Zhang L.-Z., Gong J.-G., Li J.-H., Hao Y.-S., Xu H.-J., Liu Y.-C., Feng Z.-H., 2023. Dietary resveratrol supplementation on growth performance, immune function and intestinal barrier function in broilers challenged with lipopolysaccharide. Poult. Sci. 102, 102968, https://doi.org/10.1016/j.psj.....
 
ISSN:1230-1388
Journals System - logo
Scroll to top