ORIGINAL PAPER
In vitro gas production, rumen fermentation and production
performance of steers fed multinutritional prickly pear blocks
More details
Hide details
1
Tecnológico Nacional de México, Instituto Tecnológico del Valle del Guadiana, 34371, Durango, México
2
Conacyt, Universidad Juárez del Estado de Durango, 34000, Durango, México
3
Universidad Juárez del Estado de Durango, Facultad de Medicina Veterinaria y Zootecnia, 34307, Durango, México
Publication date: 2022-06-20
J. Anim. Feed Sci. 2022;31(3):258-264
KEYWORDS
TOPICS
ABSTRACT
The aim of this study was to evaluate the replacement of oat
hay exclusively with fermented prickly pear in developed multi-nutritional
blocks (MNBs) on steer production efficiency and in vitro rumen fermentation
parameters. Two experiments were performed: Trial 1 (in vitro assay) evaluated
in vitro fermentation parameters of three MNBs replacing oat hay (MNB0 –
0% prickly pear, MNB1 – 25% prickly pear, MNB2 – 25% fermented prickly
pear). Trial 2 (in vivo assay) evaluated the effect of MNBs on steer production
performance. Both experiments were established as a completely randomized
design. The values for proteins, metabolisable energy, gas production, methane
and CO2were higher in MNB2 (P < 0.05) group. Total and individual volatile fatty
acids differed between experimental MNBs groups (P < 0.05). Mean body weight
and mean live-weight gain of steers were increased with MNB supplementation
in T2 group by 12 and 37%, respectively. Dry matter digestibility was higher
(P < 0.05), but methane and CO2 production in the rumen decreased with MNB
supplementation (P < 0.05). Replacing 25% of oat hay with fermented prickly
pear leaves increases the nutritional quality of MNB2, while improving animal
production variables and reducing rumen methane emissions.
CONFLICT OF INTEREST
The Authors declare that there is no conflict of
interest.
METADATA IN OTHER LANGUAGES:
Chinese
豆科植物中棉子糖低聚糖的含量及其对动物的重要性
摘要: 本研究旨在评估采用仙人果制备的多重营养饲料块 (MNB) 替代燕麦干草饲养肉牛对其生产效率和体
外瘤胃发酵参数的影响。本研究由两个试验组成:试验1 (T1:体外试验)评估了三种MNB替代燕麦干草
(MNB0:0% MNB、MNB1:25% MNB、MNB2–25% 发酵MNB) 的体外发酵参数。试验2 。 T2 :体内试验)评估
了上述3种MNB添加对肉牛生产性能的影响。两个实验均为完全随机设计。T1试验中,MNB2组的蛋白质含
量、代谢能、产气量、甲烷和CO2
值均显著升高 (P < 0.05)。各MNBs组之间的总挥发性脂肪酸和单个挥发性
脂肪酸存在差异 (P < 0.05)。T2试验中, T2组的平均体重和平均增重随MNB增加分别增加了12%和37%。添加
MNB后的瘤胃干物质消化率较高 (P < 0.05),但甲烷和CO2
的产生量降低 (P < 0.05)。用发酵的仙人果叶MNB代替
25%的燕麦干草可提高MNB2组的营养质量,同时改善动物生产变量并减少瘤胃甲烷排放。
REFERENCES (21)
1.
ANKOM, 2015. Gas production system operator’s manual. ANKOM Technology. Macedon, NY (USA)
2.
AOAC International, 2019. Official Methods of Analysis of AOAC International. 21th Edition. Gaithersburg, MD (USA)
3.
Araiza-Ponce K., Murillo-Ortiz M., Herrera-Torres E., Valencia-Vázquez R., Carrete-Carreón F.O., Pámanes-Carrasco G., 2020. Leucaena leucocephala and Opuntia ficus-indica reduce the ruminal methane production in vitro (in Spanish). Abanico Vet. 10, 1–13,
https://doi.org/10.21929/abave...
4.
Del Razo O.E., Almaráz I., Espinoza V., Miranda L.A., Arias L., Guan L., Buendía, Peláez A., 2015. Comparative analysis of the in vitro fermentation of wasted cladodes (Opuntia spp.), lucerne and oat hays. S. Afr. J. Anim. Sci. 45, 470–475,
https://doi.org/10.4314/sajas....
5.
Ferraro S.M., Mendoza G.D., Miranda L.A., Gutiérrez C.G., 2009. In vitro gas production and ruminal fermentation of glycerol, propylene glycol and molasses. Anim. Feed Sci. Technol. 154, 112–118,
https://doi.org/10.1016/j.anif...
6.
Galyean M.L., 2010. Laboratory procedures for animal nutrition research. 14th edition. Department of Animal and Food Sciences. Texas Tech University. Lubbock, TX (USA)
7.
González-Arreola A., Murillo-Ortiz M., Pámanes-Carrasco G., RevelesSaucedo F., Herrera-Torres E., 2019. Nutritive quality and gas production of corn silage with the addition of fresh and fermented prickly pear cladodes. J. Anim. Plant Sci. 40, 6544–6553
8.
Graillet-Juarez E.M., Arieta-Román R.J., Aguilar-Garza M.C., AlvaradoGómez L.C., Rodríguez-Orozco N., 2017. Daily weight gain in grazing initiation bulls supplemented with nutritional blocks (in Spanish). Rev. Electron. Vet. 18
9.
Herrera E., Murillo M., Berumen L., Soto-Cruz N.O., Páez-Lerma J.B., 2017. Protein enrichment of Opuntia ficus-indica using Kluyveromyces marxianus in solid-state fermentation. Cien. Inv. Agr. 44, 113–120,
https://doi.org/10.7764/rcia.v...
10.
Khalil M., Lestari N., Sardilla P., Hermon H., 2015. The use of local mineral formulas as a feed block supplement for beef cattle fed on wild forages. Media Peternakan. 38, 34–41,
https://doi.org/10.5398/medpet...
11.
Khan N., Sulaiman S.M., Hashmi M.S., Rahman S.U., Cone J.W., 2021. Chemical composition, ruminal degradation kinetics, and methane production (in vitro) of winter grass species. J. Sci. Food Agric. 101, 179–184,
https://doi.org/10.1002/jsfa.1...
12.
Mendoza G.D., Plata F.X., Vázquez G., Sánchez-Trocino M., Hernández P.A., Martinez J.A., 2017. Intake and digestibility with nutritional blocks for brocked deers (Mazama americana and Mazama temama). Intern. J. Appl. Res. Vet. Med. 15, 26–30
13.
Musco N., Koura I.B., Tudisco R., Awadjihè G., Adjolohoun S., Cutrignelli M.I., Mollica M.P., Houinato M., Infascelli F., Calabrò S., 2016. Nutritional characteristics of forage grown in south of Benin. Asian-Australas. J. Anim. Sci. 29, 51–61,
https://doi.org/10.5713/ajas.1...
14.
Menke K.H., Steingass H., 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28, 7–55
15.
Murillo-Ortiz M., Herrera-Torres E., Corral-Luna A., Pámanes-Carrasco G., 2018. Effect of inclusion of graded levels of water hyacinth on in vitro gas production kinetics and chemical composition of alfalfa hay based beef cattle diets. Indian J. Anim. Res. 52, 1298–1303,
https://doi.org/10.18805/ijar....
16.
Murillo-Ortiz M., Herrera-Torres E., Páez-Lerma J., Ruíz O., Corral-Luna A., Pámanes-Carrasco G., 2019. Digestive and fermentative dynamics in steers supplemented with multinutrient blocks containing fermented Opuntia ficusindica. Anim. Nutr. Feed Technol. 19, 395–404,
https://doi.org/10.5958/0974-1...
17.
Sanz-Sáez Á., Erice G., Aguirreolea J., Munoz F., SánchezDiaz M., Irigoyen J.J., 2012. Alfalfa forage digestibility, quality and yield under future climate change scenarios vary with Sinorhizobium meliloti strain. J. Plant Physiol. 169, 782–788,
https://doi.org/10.1016/j.jplp...
18.
Van Soest P.J., Robertson J.B., Lewis B.A., 1991. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597,
https://doi.org/10.3168/jds.S0...
19.
Vázquez-Mendoza P., Miranda-Romero L.A., Aranda-Osorio G., Burgueño-Ferreira J.A., Salem A.Z.M., 2017. Evaluation of eleven Mexican cultivars of prickly pear cactus trees for possibly utilization as animal fed: in vitro gas production. Agrofor. Syst. 91, 749–756,
https://doi.org/10.1007/s10457...
20.
Zarah A.I., Mohammed I.D., Abbator F.I., 2014. Rumen degradation characteristics of multinutrient blocks in semi-arid region of Nigeria. Anim. Prod. 16, 25–30
21.
Zhang W., Chengyong Y., Xu J., Yang X., 2015. Beneficial synergetic effect on gas production during co–pyrolysis of sewage sludge and biomass in a vacuum reactor. Bioresour. Technol. 183, 255–258,
https://doi.org/10.1016/j.bior...