ORIGINAL PAPER
Inclusion of molasses to garlic foliage silage and its effect
on in vitro ruminal fermentation and gas production
More details
Hide details
1
CONACYT-Universidad Juárez del Estado de Durango, 34000, Durango, México
2
Alumna del Doctorado en Ciencias Agropecuarias y Forestales/UJED, 34000, Durango, México
3
Tecnológico Nacional de México/Instituto Tecnológico del Valle del Guadiana, 34307, Durango, México
Publication date: 2023-04-25
J. Anim. Feed Sci. 2023;32(3):316-323
KEYWORDS
TOPICS
ABSTRACT
The aim of this study was to evaluate the inclusion of molasses
in garlic (Allium sativum) foliage silages and its effect on in vitro ruminal
fermentation parameters and gases production including methane and CO2.
To this end, fermentation was carried out in 16 microsilos with the addition
of molasses (T1 – garlic foliage 90%, ground maize 10%, molasses 0%;
T2 – garlic foliage 85%, ground maize 10%, molasses 5%; T3 – garlic foliage
80%, ground maize 10%, molasses 10%; T4 – garlic foliage 75%, ground
maize 10%, molasses 15%; n = 4) for 50 days. Subsequently, fermentation was
carried out in microsilos using rumen fluid for nutritional evaluation. The inclusion
of molasses affected protein, NDF, NSC and lactic acid contents, and pH
(P < 0.05); protein and NDF decreased 22 and 12%, respectively, with the inclusion
of 15% of molasses, and pH was generally reduced after the addition of
molasses to the experimental treatments. However, molasses increased the
NSC content and in vitro dry matter digestibility. Regarding ruminal fermentation,
no changes were recorded in the proportions of volatile fatty acids (P > 0.05),
while the concentration of total volatile fatty acids increased with the addition of
molasses (P < 0.05). Ammonia-N levels decreased with the inclusion of molasses
(P < 0.05), while maximum gas production increased up to 48%. Similarly,
methane production increased by 46% at the maximum dose of molasses addition
(P < 0.05), but no changes were recorded in the CH4:CO2 ratio (P > 0.05).
These results suggested that the addition of molasses to garlic foliage silages
did not result in significant changes in ruminal fermentation parameters such
as volatile fat acid (VFA) levels. Therefore, garlic foliage silage can be applied
without additional supplementation to reduce agricultural waste and as a nonconventional
alternative in ruminant nutrition.
CONFLICT OF INTEREST
The Authors declare that there is no conflict of
interest.
REFERENCES (29)
1.
Amer S., Hassanat F., Berthiaume R., Seguin P., Mustafa A.F., 2012. Effects of water soluble carbohydrate content on ensiling characteristics, chemical composition and in vitro gas production of forage millet and forage sorghum silages. Anim. Feed Sci. Technol. 177, 23–29,
https://doi.org/10.1016/j.anif...
2.
AOAC International, 2005. Official method of Analisys. 18th Edition. Associating of Officiating Analytical Chemists. Washintong, DC (USA)
3.
Araba A., Byers F.M., Guessous F., 2002. Patterns of rumen fermentation in bulls fed barley/molasses diets. Anim. Feed Sci. Technol. 97, 53–64,
https://doi.org/10.1016/S0377-...
4.
Araiza-Rosales E.E., Delgado L.E., Carrete-Carreón F., Medrano-Roldán H., Solís-Soto A., Rosales S.R., Haubi-Segura C.U., 2015. Fermentative and nutritional quality of maize silages complemented with apple and molasses (in Spanish). EYR Agropecuarios 2, 255–267
5.
Arndt C., Powell J.M., Aguerre M.J., Wattiaux M.A., 2015. Performance, digestion, nitrogen balance, and emission of manure ammonia, enteric methane and carbon dioxide in lactanting cows feed diets with varying alfalfa silage-to corn-silage ratios. J. Dairy Sci. 98, 418–430,
https://doi.org/10.3168/jds.20...
6.
Borshchevskaya L.N., Gordeeva T.L., Kalinina A.N., Sineokii S.P., 2016. Spectrophotometric determination of lactic acid. J. Anal. Chem. 71, 755–758,
https://doi.org/10.1134/S10619...
7.
Carro M.D., Evan de T., González J., 2018. Emisiones de metano en los animales rumiantes: Influencia de la Dieta (in Spanish). Albéitar 220, 32–35
8.
Castro M.M.D., Cardoso M.A., Detmann E., Fonseca M.A., Sampaio C.B., Marcondes M.I., 2021. In vitro ruminal fermentation and enteric methane production of tropical forage added nitrogen or nitrogen plus starch. Anim. Feed Sci. Technol. 275, 114878,
https://doi.org/10.1016/j.anif...
9.
Ferraro S.M., Mendoza G.D., Miranda L.A., Gutiérrez C.G., 2009. In vitro gas production and ruminal fermentation of glycerol, propylene glycol and molasses. Anim. Feed Sci. Technol. 154, 112–118,
https://doi.org/10.1016/j.anif...
10.
Francisco A.E., Santos-Silva J.M., Portugal A.V., Paula-Alves S., Bessa R.J., 2019. Relationship between rumen ciliate protozoa and biohydrigenation fatty acids profile in rumen and meat of lambs. PloS ONE 14, e0221996,
https://doi.org/10.1371/journa...
11.
Galyean M.L., 2010. Laboratory Procedures for Animal Nutrition Research. 14th Edition. Departament of Animal and Food Sciences. Texas Tech University. Lubbock, TX (USA)
12.
González-Arreola A., Murillo-Ortiz M., Pámanes-Carrasco G., Reveles-Saucedo F., Herrera-Torres E., 2019. Nutritive quality and gas production of corn silage with the addition of fresh and fermented prickly pear cladodes. J. Anim. Plant Sci. 40, 6544–6553
13.
Kalac P. (Editor), 2017. Detrimental compounds and bacteria. Effects of forage feeding on milk: bioactive compounds and flavor. Academic Press. Cambridge, MA (USA), pp. 125–173,
https://doi.org/10.1016/B978-0...
14.
Kumar S., Dagar S.S., Sirohi S.K., Upadhyay R.C., Puniya A.K., 2013. Microbial profiles, in vitro gas production and dry matter digestibility based on various ratios of roughage to concentrate. Ann. Microbiol. 63, 541–545,
https://doi.org/10.1007/s13213...
15.
Lee Y.H., Kim Y.I., Oh Y.K., Ahmadi F., Kwak W.S., 2017. Yield survey and nutritional evaluation of garlic stalk for ruminant feed. J. Anim. Sci. Technol. 59, 22,
https://doi.org/10.1186/s40781...
16.
Limón-Hernández D., Rayas-Amor A.A., García-Martínez A., Estrada-Flores J., Núñez-López M., Cruz Monterrosa R.G., Morales-Almaráz E., 2019. Chemical composition, in vitro gas production, methane production and fatty acid profile of canola silage (Brassica napus) with four levels of molasses. Trop. Anim. Health Prod. 51, 1579–1584,
https://doi.org/10.1007/s11250...
17.
López-Aguirre D., Hernández-Meléndez J., Rojo R., Sánchez-Dávila F., López-Villalobos N., Abdel-Fattah Z.M.S., Vázquez-Armijo J.F., Ruiz S., Santiago J., 2016. In vitro gas production kinetics and degradability of a diet for growing lambs: effect of fibrolytic enzyme products at different dose levels. Italian J. Anim Sci. 15, 453–460,
https://doi.org/10.1080/182805...
18.
López-Herrera M., Jones R.W.C., Rojas-Bourrillón A., Rodríguez-Chacón S., 2014. Valor nutricional del ensilaje de rastrojo de piña con niveles crecientes de urea (in Spanish). Nutrición Animal Tropical. 8, 1, 1–20.
https://revistas.ucr.ac.cr/ind...
19.
Morales-Querol D., Rodríguez-Hernández R., Fundora-Fernández L., García-Sánchez F., Ojeda-García F., López-Vigoa O., 2019. Fermentative quality of sorghum (Sorghum bicolor L. Moench) and citrus fruit (Citrus sp.) pulp silage (in Spanish). Pastos y Forrajes 42, 207–212
20.
Panthee A., Matsuno A., Al-Mamun M., Sano H., 2017. Effect of feeding garlic leaves on rumen fermentation, methane emission, plasma glucose kinetics, and nitrogen utilization in sheep. J. Anim. Sci. Technol. 59, 14,
https://doi.org/10.1186/s40781...
21.
Putridinanti A.D., Noviandi C.T., Gunawan A.A., Agus A., Harper K., Poppi D., 2019. A comparison of three highly fermentable carbohydrate sources (corn, cassava poder or cassava pulp) on in vitro digestion. IOP Conf. Ser.: Earth Environ. Sci. 387, 012106,
https://doi.org/10.1088/1755-1...
22.
Rapisarda T., Mereu A., Cannas A., Belvedere G., Licitra G., Carpino S., 2012. Volatile organic compounds and palatability of concentrates fed to lambs and ewes. Small Rumin. Res. 103, 120–132,
https://doi.org/10.1016/j.smal...
23.
Sahoo B., Walli T.K., 2008. Effects of formaldehyde treated mustard cake and molasses supplementation on nutrient utilization, microbial protein supply and feed efficiency in growing kids. Anim. Feed Sci. Technol. 142, 220–230,
https://doi.org/10.1016/j.anif...
24.
Sari N.F., Ray P., Rymer C., Kliem K.E., Stergiadis S., 2022. Garlic and its bioactive compounds: implications for methane emissions and ruminant nutrition. Animals 12, 2998,
https://doi.org/10.3390/ani122...
25.
Shang A., Cao S., Xu Y., Gan R.Y., Tang G.Y., Corke H., Mavumengwana V., Li H.B., 2019. Bioactive and biological functions of garlic (Allium sativum L.). Foods 8, 246,
https://doi.org/10.3390/foods8...
26.
Teodorou M.K., Williams B.A., Dhanoa M.S., McAllan A.B., France J., 1994. A simple gas production method a presupposadare transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 48, 185–197,
https://doi.org/10.1016/0377-8...
27.
Torres-Fraga K., Páez-Lerma J., Pámanes-Carrasco G., Herrera-Torres E., Carrete-Carreón F.O., Murillo-Ortiz M., 2020. Substitution of garlic leaves to alfalfa hay and its effect on in vitro ruminal fermentation (in Spanish). Abanico Veterinario. 10, 1–11,
https://dx.doi.org/10.21929/ab...
28.
Tuyen D.V., Tolosa X.M., Poppi D.P., McLennan S.R., 2014. Effect of varying the proportion of molasses in the diet on intake, digestion and microbial protein production by steers. Anim. Prod. Sci. 55, 17–26,
https://doi.org/10.1071/AN1322...
29.
Van Dung D., Shang W., Yao W., 2014. Effect of crude protein levels in concentrate and concentrate levels in diet on in vitro fermentation. Asian-Australas. J. Anim. Sci. 27, 797–805,
https://doi.org/10.5713/ajas.2...