ORIGINAL PAPER
 
KEYWORDS
TOPICS
ABSTRACT
The aim of the study was to evaluate the influences of fibrolytic enzymes mixture (FEM) – a mixture of cellulase, xylanase, pectinase and laccase – on nutrient digestion and ruminal fermentation in bulls. Eight Holstein bulls fitted with rumen cannula were used in a replicated 4 × 4 Latin square design and allocated to four treatment groups: control, low-FEM (LFEM), medium-FEM (MFEM) and high-FEM (HFEM) with 0, 0.25, 0.50 and 0.75 g/kg FEM, respectively. Even though the addition of FEM had a positive linear impact on dry matter (DM) intake and average daily gain, it had no influence on feed conversion ratio. Supplemented FEM linearly promoted nutrients total-tract digestibility, reaching greater values at 0.50 and 0.75 g FEM/kg DM. Rumen pH value and the ratio of acetate to propionate were reduced linearly, the concentration of total volatile fatty acids (VFA) elevated linearly but the content of ammonia-N was not influenced with increasing dose of FEM. For corn silage rumen degradation, effective degradability (ED) of DM and organic matter were quadratically reduced, reaching greater values in MFEM, whereas ED of neutral detergent fibre was linearly elevated. Supplemented FEM linearly increased activities of cellulolytic enzymes, α-amylase and protease and populations of bacteria, fungi, protozoa, Fibrobacter succinogenes, Ruminococcus albus, Prevotella ruminicola, Butyrivibrio fibrisolvens and Ruminobacter amylophilus, but had no impact on populations of methanogens and Ruminococcus flavefaciens. Supplemented FEM linearly increased urinary total purine derivative excretion. So, it was indicated that FEM enhanced nutrient digestibility and total VFA production, the optimum dose was 0.50 g/kg DM in bull diets.
ACKNOWLEDGEMENTS
This work was supported by a grant from Guangdong Provincial Key Laboratory of Animal Nutrition Regulation (DWYYTK-18KF006) and Key Research and Development project of Shanxi Province (201903D221001), and Animal Husbandry Key Discipline Construction programme in ‘1331 project’ of Shanxi Province.
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
METADATA IN OTHER LANGUAGES:
Chinese
混合纤维酶对荷斯坦牛生产性能、营养物质消化、瘤胃发酵 和瘤胃菌群的影响
关键词:纤维素酶, 微生物酶活性, 营养物质消化率, 瘤胃细菌, 木聚糖酶
摘要: 本研究旨在评价混合纤维分解酶(FEM)——纤维素酶、木聚糖酶、果胶酶和漆酶的混合物——对公 牛营养物质消化和瘤胃发酵的影响。 选用8头装有瘤胃瘘管的荷斯坦公牛,采用4 × 4拉丁方重复设计,随 机分为4个处理组:对照组、低FEM(LFEM)、中FEM(MFEM)和高FEM(HFEM),分别添加0、0.25、0.50 和0.75 g/kg FEM。虽然添加FEM对干物质采食量和平均日增重有正线性影响,但对饲料转化效率无影响。 添 加FEM可线性提高营养物质的全消化道消化率,分别在0.50和0.75 g FEM/kg DM时达到最大值,瘤胃pH值和乙 酸/丙酸比值均线性降低。总挥发性脂肪酸(VFA)浓度随FEM剂量的增加呈线性升高,瘤胃氨态氮含量不受 影响。对于玉米青贮,瘤胃DM和有机物质的有效降解率(ED)呈二次曲线下降,MFEM组的有效降解率达 到最大值,而中性洗涤纤维的有效降解率(ED)呈线性升高。添加FEM后,纤维素分解酶、α-淀粉酶和蛋 白酶的活性和细菌、真菌、原生动物、琥珀酸纤维杆菌、白化瘤胃球菌、瘤胃普雷沃氏菌、溶纤维丁酸弧 菌和嗜淀粉瘤胃杆菌的数量呈线性增加,但对产甲烷菌和黄瘤胃球菌的数量无影响。添加FEM后,尿嘌呤 衍生物总排泄量线性增加。综上所述,混合纤维酶以0.50 g/kg DM为适宜添加量,可提高牛饲粮中营养物质 的消化率和总VFA产量。
REFERENCES (29)
1.
Agarwal N., Agarwal I., Kamra D.N., Chaudhury L.C., 2000. Diurnal variations in the activities of hydrolytic enzymes in different fractions of rumen contents of Murrah buffaloes. J. Appl. Anim. Res. 18, 73–80, https://doi.org/10.1080/097121....
 
2.
Allen M.S., 2000. Effects of diet on short-term regulation of feed intake by lactating dairy cattle. J. Dairy Sci. 83, 1598–1624, https://doi.org/10.3168/jds.S0....
 
3.
AOAC International, 2006. Official Methods of Analysis. 18th Edition. Association of Official Analytical Chemists International, Gaithersburg, MD (USA).
 
4.
Beauchemin K.A., Colombatto D., Morgavi D.P., Yang W.Z., Rode L.M., 2004. Mode of action of exogenous cell wall degrading enzymes for ruminants. Can. J. Anim. Sci. 84, 13–22, https://doi.org/10.4141/A02-10....
 
5.
Beauchemin K.A., Yang W.Z., Rode L.M., 1999. Effects of grain source and enzyme additive on site and extent of nutrient digestion in dairy cows. J. Dairy Sci. 82, 378–390, https://doi.org/10.3168/jds.S0....
 
6.
Chung Y.H., Zhou M., Holtshausen L., Alexander T.W., Mcallister T.A., Guan L.L., Oba M., Beauchemin K.A., 2012. A fibrolytic enzyme additive for lactating holstein cow diets: ruminal fermentation, rumen microbial populations, and enteric methane emissions. J. Dairy Sci. 95, 1419–1427, https://doi.org/10.3168/jds.20....
 
7.
Colombatto D., Morgavi D.P., Furtado A.F., Beauchemin K.A., 2003. Screening of exogenous enzymes for ruminant diets: Relationship between biochemical characteristics and in vitro ruminal degradation. J. Anim. Sci. 81, 2628–2638, https://doi.org/10.1046/j.1439....
 
8.
Dijkstra J., Ellis J.L., Kebreab E., Strathe A.B., Lópezc S., France J., Bannink A., 2012. Ruminal pH regulation and nutritional consequences of low pH. Anim. Feed Sci. Technol. 172, 22–33, https://doi.org/10.1016/j.anif....
 
9.
Eun J.S., Beauchemin K.A., Schulze H., 2007. Use of exogenous fibrolytic enzymes to enhance in vitro fermentation of alfalfa hay and corn silage. J. Dairy Sci. 90, 1440–1451, https://doi.org/10.3168/jds.S0....
 
10.
Filípek J., Dvořák R., 2009. Determination of the volatile fatty acid content in the rumen liquid: comparison of gas chromatography and capillary isotachophoresis. ACTA VET. BRNO, 78, 627–633, https://doi.org/10.2754/avb200....
 
11.
Gado H.M., Salem A.Z.M., Robinson P.H., Hassan M., 2009. Influence of exogenous enzymes on nutrient digestibility, extent of ruminal fermentation as well as milk production and composition in dairy cows. Anim. Feed Sci. Technol. 154, 36–46, https://doi.org/10.1016/j.anif....
 
12.
Giraldo L.A., Tejido M.L., Ranilla M.J., Carro M.D., 2007. Effects of exogenous cellulase supplementation on microbial growth and ruminal fermentation of a high-forage diet in Rusitec fermenters. J. Anim. Sci. 85, 1962–1970, https://doi.org/10.2527/jas.20....
 
13.
Gómez-Vázquez A., Mendoza G.D., Aranda E., Pérez J., Hernández A., Pinos-Rodríguez J.M., 2011. Influence of fibrolytic enzymes on growth performance and digestion in steers grazing stargrass and supplemented with fermented sugarcane. J. Appl. Anim. Res. 39, 77–79, https://doi.org/10.1080/097121....
 
14.
Hristov A.N., McAllister T.A., Cheng K.J., 2000. Intraruminal supplementation with increasing levels of exogenous polysaccharidedegrading enzymes: Effects on nutrient digestion in cattle fed a barley grain diet. J. Anim. Sci. 78, 477–487, https://doi.org/10.2527/2000.7....
 
15.
Krueger N.A., Adesogan A.T., Staples C.R., Krueger W.K., Kim S.C., Littell R.C., Sollenberger L.E., 2008. Effect of method of applying fibrolytic enzymes or ammonia to Bermudagrass hay on feed intake, digestion, and growth of beef steers. J. Anim. Sci. 86, 882–889, https://doi.org/10.2527/jas.20....
 
16.
McDonald I., 1981. A revised model for the estimation of protein degradability in the rumen. J. Agric. Sci. 96, 251–252, https://doi.org/10.1017/S00218....
 
17.
Morgavi D.P., Beauchemin K.A., Nsereko V.L., Rode L.M., Mcallister T.A., Wang Y., 2004. Trichoderma enzymes promote Fibrobacter succinogenes s85 adhesion to, and degradation of, complex substrates but not pure cellulose. J. Sci. Food Agric. 84, 1083–1090, https://doi.org/10.1002/jsfa.1....
 
18.
NRC (National Research Council), 2001. Nutrient Requirements of Dairy Cattle. 7th Revised Edition. The National Academies Press. Washington, DC (USA), https://doi.org/10.17226/9825.
 
19.
Nsereko V.L., Beauchemin K.A., Morgavi D.P., Rode L.M., Furtado A.F., McAllister T.A., Iwaasa A.D., Yang W.Z., Wang Y., 2002. Effect of a fibrolytic enzyme preparation from Trichoderma Longibrachiatum on the rumen microbial population of dairy cows. Can. J. Microbiol. 48, 14–20, https://doi.org/10.1139/w01-13....
 
20.
SAS (Statistical Analysis System), 2002. User’s Guide: Statistics, Version 9.2. 2nd Edition. SAS Institute Inc., Cary, NC (USA).
 
21.
Van Soest P.J., Robertson J.B., Lewis B.A., 1991. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597, https://doi.org/10.3168/jds.S0....
 
22.
Wang Y., Mcallister T.A., 2002. Rumen microbes, enzymes and feed digestion-a review. Asian-Aust. J. Anim. Sci. 15, 1659–1676, https://doi.org/10.5713/ajas.2....
 
23.
Wang Y., Ramirez-Bribiesca J.E., Yanke L.J., Tsang A., McAllister T.A., 2012. Effect of exogenous fibrolytic enzyme application on the microbial attachment and digestion of barley straw in vitro. Asian-Aust. J. Anim. Sci. 25, 66–74, https://doi.org/10.5713/ajas.2...
 
24.
Yang H.J., Xie C.Y., 2010. Assessment of fibrolytic activities of 18 commercial enzyme products and their abilities to degrade the cell wall fraction of corn stalks in in vitro enzymatic and ruminal batch cultures. Anim. Feed Sci. Technol. 159, 110–121, https://doi.org/10.1016/j.anif...
 
25.
Yang W.Z., Beauchemin K.A., Koenig K.M., Rode L.M., 1997. Comparison of hull-less barley, barley, or corn for lactating cows: effects on extent of digestion and milk production. J. Dairy Sci. 80, 2475–2486, https://doi.org/10.3168/jds.S0...
 
26.
Yang W.Z., Beauchemin K.A., Rode L.M., 1999. Effects of an enzyme feed additive on extent of digestion and milk production of lactating dairy cows. J. Dairy Sci. 82, 391–403, https://doi.org/10.3168/jds.S0....
 
27.
Yang W.Z., Beauchemin K.A., Rode L.M., 2000. A comparison of methods of adding fibrolytic enzymes to lactating cow diets. J. Dairy Sci. 83, 2512–2520, https://doi.org/10.3168/jds.S0....
 
28.
Yu Z., Morrison M., 2004. Improved extraction of PCR-quality community DNA from digesta and fecal sample. BioTechniques 36, 808–812, https://doi.org/10.2144/04365S....
 
29.
Yue Z.Q., Xu Y.Z., Wang C., Liu Q., Guo G., Huo W.J., Zhang J., Chen L., Pei C.X., Zhang Y.L., Zhang S.L., 2020. Effects of dietary laccase supplementation on growth performance, nutrient digestion, rumen fermentation and microbiota in dairy bulls. Anim. Feed Sci. Technol. 269, 114645, https://doi.org/10.1016/j.anif....
 
 
CITATIONS (4):
1.
Improving the nutritional value and rumen fermentation characteristics of sesame seed coats through bioconversion approach using exogenous fibrolytic enzymes produced by Trichoderma longibrachiatum
Khalil Abid, Jihene Jabri, Hela Yaich, Atef Malek, Jamel Rekhis, Mohamed Kamoun
Biomass Conversion and Biorefinery
 
2.
Nutritional value assessments of peanut hulls and valorization with exogenous fibrolytic enzymes extracted from a mixture culture of Aspergillus strains and Neurospora intermedia
Khalil Abid, Jihene Jabri, Hela Yaich, Atef Malek, Jamel Rekhis, Mohamed Kamoun
Biomass Conversion and Biorefinery
 
3.
Bioconversion of alperujo into an alternative feed for ruminants by pretreatment with live yeasts and/or exogenous fibrolytic enzymes
Khalil Abid, Jihene Jabri, Hela Yaich, Atef Malek, Jamel Rekhis, Mohamed Kamoun
Environmental Science and Pollution Research
 
4.
Evaluation of Increasing Dietary Concentrations of a Multi-Enzyme Complex in Feedlot Lambs’ Rations
Germán David Mendoza-Martínez, Pedro Abel Hernández-García, Cesar Díaz-Galván, Pablo Benjamín Razo-Ortiz, Juan José Ojeda-Carrasco, Nalley Sánchez-López, María Eugenia de la Torre-Hernández
Animals
 
ISSN:1230-1388
Journals System - logo
Scroll to top