REVIEW PAPER
Insect proteins as a potential source of antimicrobial peptides in livestock production. A review
,
 
 
 
More details
Hide details
1
Poznań University of Life Sciences, Institute of Veterinary Sciences, Wołyńska 35, 60-637 Poznań, Poland
 
2
Aarhus University, Department of Animal Science, Blichers Allé 20, 8830 Tjele, Denmark
 
 
Publication date: 2017-05-15
 
 
Corresponding author
A. Józefiak   

Poznań University of Life Sciences, Institute of Veterinary Sciences, Wołyńska 35, 60-637 Poznań, Poland
 
 
J. Anim. Feed Sci. 2017;26(2):87-99
 
KEYWORDS
TOPICS
ABSTRACT
Together with the extraction of first insect antimicrobial protein (AMP) from the pupae of the giant silk moths Hyalophora cecropia the antibacterial activity of insects was observed for the first time in 1980. Practically, AMPs are small, cationic proteins that exhibit activity against bacteria, fungi as well as certain parasites and viruses. It is known that in addition to their antimicrobial effect, they boost host specific innate immune responses and exert selective immunomodulatory effects involved in angiogenesis and wound healing. More than 1,500 proteins with antimicrobial activity have been identified in different organisms, including plants, fungi, bacteria and animals. Insects are a primary source of AMPs which are considered as not resulting in the development of natural bacterial resistance. In general, they are characterized as heat-stable with no adverse effects on eukaryotic cells. These characteristics contribute to the potential use of these proteins in human and veterinary medicine and in animal nutrition. Depending on their mode of action, insect AMPs may be applied as single peptides, as a complex of different AMPs and as an active fraction of insect proteins in the nutrition of different livestock. The great potential for the use of AMPs in animal production is primarily associated with the growing problem of antibiotics resistance, which has triggered the search for alternatives to antibiotics in livestock production. The review presents the current knowledge of insect AMPs, their chemical structure and mode of action with focus on their potential use in agriculture and livestock production.
REFERENCES (86)
1.
Aerts A.M., François I.E.J.A., Cammue B.P.A., Thevissen K., 2008. The mode of antifungal action of plant, insect and human defensins. Cell. Mol. Life Sci. 65, 2069–2079, https://doi.org/10.1007/s00018....
 
2.
Andersen A.S., Sandvang D., Schnorr K.M., Kruse T., Neve S., Joergensen B., Karlsmark T., Krogfelt K.A., 2010. A novel approach to the antimicrobial activity of maggot debridement therapy. J. Antimicrob. Chemother. 65, 1646–1654, https://doi.org/10.1093/jac/dk....
 
3.
Andersson D.I., Hughes D., Kubicek-Sutherland J.Z., 2016. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist. Updates 26, 43–57, https://doi.org/10.1016/j.drup....
 
4.
Bagnicka E., Jóźwik A., Strzałkowska N., Krzyżewski J., Zwierzchowski L., 2011. Antimicrobial peptides – outline of the history of studies and mode of action (in Polish). Med. Wet. 67, 444–448.
 
5.
Bengoechea J.A., Skurnik M., 2000. Temperature-regulated efflux pump/potassium antiporter system mediates resistance to cationic antimicrobial peptides in Yersinia. Mol. Microbiol. 37, 67–80, https://doi.org/10.1046/j.1365....
 
6.
Boman H.G., Nilsson-Faye I., Paul K., Rasmuson T. Jr, 1974. Insect immunity. I. Characteristics of an inducible cell-free antibacterial reaction in hemolymph of Samia cynthia pupae. Infect. Immun. 10, 136–145.
 
7.
Bovera F., Loponte R., Marono S., Piccolo G., Parisi G., Iaconisi V., Gasco L., Nizza A., 2016. Use of Tenebrio molitor larvae meal as protein source in broiler diet: Effect on growth performance, nutrient digestibility, and carcass and meat traits. J. Anim. Sci. 94, 639–647, https://doi.org/10.2527/jas.20....
 
8.
Buchon N., Silverman N., Cherry S., 2014. Immunity in Drosophila melanogaster – from microbial recognition to whole-organism physiology. Nat. Rev. Immunol. 14, 796–810, https://doi.org/10.1038/nri376....
 
9.
Bulet P., Stöcklin R., 2005. Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept. Lett. 12, 3–11, https://doi.org/10.2174/092986....
 
10.
Bulet P., Stöcklin R., Menin L., 2004. Anti-microbial peptides: from invertebrates to vertebrates. Immunol. Rev. 198, 169–184, https://doi.org/10.1111/j.0105....
 
11.
Cheng J.-x., Liu Y.-g., Suo W.-l., Zhao R.-j., Fan H.-y., 2010. Effects of the antimicrobial peptide of Tenebrio molitor Linnaeus on cell cycle of K562 and inhibitory effects of that on cell proliferation compared with hydroxyurea. Chin. J. Vector Biol. Control 21, 324–326.
 
12.
Chernysh S., Gordya N., Suborova T., 2015. Insect antimicrobial peptide complexes prevent resistance development in bacteria. PLoS ONE 10, e0130788, https://doi.org/10.1371/journa....
 
13.
Choi S.C., Ingale S.L., Kim J.S., Park Y.K., Kwon I.K., Chae B.J., 2013a. Effects of dietary supplementation with an antimicrobial peptide-P5 on growth performance, nutrient retention, excreta and intestinal microflora and intestinal morphology of broilers. Anim. Feed Sci. Technol. 185, 78–84, https://doi.org/10.1016/j.anif....
 
14.
Choi S.C., Ingale S.L., Kim J.S., Park Y.K., Kwon I.K., Chae B.J., 2013b. An antimicrobial peptide-A3: effects on growth performance, nutrient retention, intestinal and faecal microflora and intestinal morphology of broilers. Br. Poult. Sci. 54, 738–746, https://doi.org/10.1080/000716....
 
15.
Choi W.-H., Yun J.-H., Chu J.-P., Chu K.-B., 2012. Antibacterial effect of extracts of Hermetia illucens (Diptera: Stratiomyidae) larvae against Gram-negative bacteria. Entomol. Res. 42, 219–226, https://doi.org/10.1111/j.1748....
 
16.
Coyne L.A., Latham S.M., Williams N.J., Dawson S., Donald I.J., Pearson R.B., Smith R.F., Pinchbeck G.L., 2016. Understanding the culture of antimicrobial prescribing in agriculture: a qualitative study of UK pig veterinary surgeons. J. Antimicrob. Chemother. 71, 3300–3312, https://doi.org/10.1093/jac/dk....
 
17.
Dang X.L., Wang Y.S., Huang Y.D., Yu X.Q., Zhang W.Q., 2010. Purification and characterization of an antimicrobial peptide, insect defensin, from immunized house fly (Diptera: Muscidae). J. Med. Entomol. 47, 1141–1145, https://doi.org/10.1603/ME1001....
 
18.
Duclohier H., 2002. How do channel- and pore-forming helical peptides interact with lipid membranes and how does this account for their antimicrobial activity? Mini-Rev. Med. Chem. 2, 331–342, https://doi.org/10.2174/138955....
 
19.
El-Tantawy N.L., 2015. Helminthes and insects: maladies or therapies. Parasitol. Res. 114, 359–377, https://doi.org/10.1007/s00436....
 
20.
Erickson M.C., Islam M., Sheppard C., Liao J., Doyle M.P., 2004. Reduction of Escherichia coli O157:H7 and Salmonella enterica serovar Enteritidis in chicken manure by larvae of the black soldier fly. J. Food Prot. 67, 685–690, https://doi.org/10.4315/0362-0....
 
21.
Faye I., Pye A., Rasmuson T., Boman H.G., Boman I.A., 1975. Insect immunity: II. Simultaneous induction of antibacterial activity and selective synthesis of some haemolymph proteins in diapausing pupae of Hyalophora cecropia and Samia cynthia. Infect. Immun. 12, 1426–1438.
 
22.
Frick I.-M., Åkesson P., Rasmussen M., Schmidtchen A., Björck L., 2003. SIC, a secreted protein of Streptococcus pyogenes that inactivates antibacterial peptides. J. Biol. Chem. 278, 16561–16566, https://doi.org/10.1074/jbc.M3....
 
23.
Fu P., Wu J., Guo G., 2009. Purification and molecular identification of an antifungal peptide from the hemolymph of Musca domestica (housefly). Cell. Mol. Immunol. 6, 245–251, https://doi.org/10.1038/cmi.20....
 
24.
Groisman E.A., Parra-Lopez C., Salcedo M., Lipps C.J., Heffron F., 1992. Resistance to host antimicrobial peptides is necessary for Salmonella virulence. Proc. Natl. Acad. Sci. USA 89, 11939–11943, https://doi.org/10.1073/pnas.8....
 
25.
Guina T., Yi E.C., Wang H., Hackett M., Miller S.I., 2000. A PhoP-regulated outer membrane protease of Salmonella enterica serovar typhimurium promotes resistance to alpha-helical antimicrobial peptides. J. Bacteriol. 182, 4077–4086, https://doi.org/10.1128/JB.182....
 
26.
Hancock R.E.W., Chapple D.S., 1999. Peptide antibiotics. Antimicrob. Agents Chemother. 43, 1317–1323.
 
27.
Hansen A., Schäfer I., Knappe D., Seibel P., Hoffmann R., 2012. Intracellular toxicity of proline-rich antimicrobial peptides shuttled into mammalian cells by the cell-penetrating peptide penetration. Antimicrob. Agents Chemother. 56, 5194–5201, https://doi.org/10.1128/AAC.00....
 
28.
Hull R., Katete R., Ntwasa M., 2012. Therapeutic potential of antimicrobial peptides from insects. Biotechnol. Mol. Biol. Rev. 7, 31–47.
 
29.
Hultmark D., Steiner H., Rasmuson T., Boman H.G., 1980. Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur. J. Biochem. 106, 7–16, https://doi.org/10.1111/j.1432....
 
30.
Imler J.-L., Hoffmann J.A., 2000. Signaling mechanisms in the antimicrobial host defense of Drosophila. Curr. Opin. Microbiol. 3, 16–22, https://doi.org/10.1016/S1369-....
 
31.
Jin T., Bokarewa M., Foster T., Mitchell J., Higgins J., Tarkowski A., 2004. Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J. Immunol. 172, 1169–1176, https://doi.org/10.4049/jimmun....
 
32.
John H., Maronde E., Forssmann W.G., Meyer M., Adermann K., 2008. N-terminal acetylation protects glucagon-like peptide GLP-1-(7-34)-amide from DPP-IV-mediated degradation retaining cAMP- and insulin-releasing capacity. Eur. J. Med. Res. 13, 73–78.
 
33.
Jones D.E., Bevins C.L., 1992. Paneth cells of the human small intestine express an antimicrobial peptide gene. J. Biol. Chem. 267, 23216–23225.
 
34.
Joo H.-S., Fu C.-I., Otto M., 2016. Bacterial strategies of resistance to antimicrobial peptides. Philos. Trans. R. Soc. B-Biol. Sci. 371, 20150292, https://doi.org/10.1098/rstb.2....
 
35.
Józefiak D., Józefiak A., Kierończyk B., Rawski M., Świątkiewicz S., Długosz J., Engberg R.M., 2016. Insects – a natural nutrient source for poultry – a review. Ann. Anim. Sci. 16, 297–313, https://doi.org/10.1515/aoas-2....
 
36.
Józefiak D., Kierończyk B., Juśkiewicz J., Zduńczyk Z., Rawski M., Długosz J., Sip A., Højberg O., 2013. Dietary nisin modulates the gastrointestinal microbial ecology and enhances growth performance of the broiler chickens. PLoS ONE 8, e85347, https://doi.org/10.1371/journa....
 
37.
Kierończyk B., Pruszyńska-Oszmałek E., Świątkiewicz S., Rawski M., Długosz J., Engberg R.M., Józefiak D., 2016. The nisin improves broiler chicken growth performance and interacts with salinomycin in terms of gastrointestinal tract microbiota composition. J. Anim. Feed Sci. 25, 309–316, https://doi.org/10.22358/jafs/....
 
38.
Kim I.-W., Lee J.H., Subramaniyam S., Yun E.-Y., Kim I., Park J., Hwang J.S., 2016. De novo transcriptome analysis and detection of antimicrobial peptides of the American cockroach Periplaneta americana (Linnaeus). PLoS ONE, 11, e0155304, https://doi.org/10.1371/journa....
 
39.
Kragol G., Hoffmann R., Chattergoon M.A., Lovas S., Cudic M., Bulet P., Condie B.A., Rosengren K.J., Montaner L.J., Otvos L. Jr, 2002. Identification of crucial residues for the antibacterial activity of the proline-rich peptide, pyrrhocoricin. Eur. J. Biochem. 269, 4226–4237, https://doi.org/10.1046/j.1432....
 
40.
Lamberty M., Zachary D., Lanot R., Bordereau C., Robert A., Hoffmann J.A., Bulet P., 2001. Inect immunity. Constitutive expression of a cysteine-rich antifungal and a linear antibacterial peptide in a termite insect. J. Biol. Chem. 276, 4085–4092, https://doi.org/10.1074/jbc.M0....
 
41.
Landers T.F., Cohen B., Wittum T.E., Larson E.L., 2012. A review of antibiotic use in food animals: perspective, policy, and potential. Public Health Rep. 127, 4–22.
 
42.
Lee K.H., Hong S.Y., Oh J.E., 1998. Synthesis and structure-function study about tenecin 1, an antibacterial protein from larvae of Tenebrio molitor. FEBS Lett. 439, 41–45, https://doi.org/10.1016/S0014-....
 
43.
Lee S., Siddiqui R., Khan N.A., 2012. Animals living in polluted environments are potential source of antimicrobials against infectious agents. Pathog. Glob. Health 106, 218–223, https://doi.org/10.1179/204777....
 
44.
Lee Y.-T., Kim D.-H., Suh J.-Y., Chung J.H., Lee B.L., Lee Y., Choi B.-S., 1999. Structural characteristics of tenecin 3, an insect antifungal protein. IUBMB Life 47, 369–376, https://doi.org/10.1080/152165....
 
45.
Lehrer R.I., Ganz T., 1990. Antimicrobial polypeptides of human neutrophils. Blood 76, 2169–2181.
 
46.
Li W.-F., Ma G.-X., Zhou X.-X., 2006. Apidaecin-type peptides: Biodiversity, structure–function relationships and mode of action. Peptides 27, 2350–2359, https://doi.org/10.1016/j.pept....
 
47.
Li Y., Xiang Q., Zhang Q., Huang Y., Su Z., 2012. Overview on the recent study of antimicrobial peptides: Origins, functions, relative mechanisms and application. Peptides 37, 207–215, https://doi.org/10.1016/j.pept....
 
48.
Luenser K., Ludwig A., 2005. Variability and evolution of bovine β-defensin genes. Genes Immun. 6, 115–122, https://doi.org/10.1038/sj.gen....
 
49.
Makkar H.P.S., Tran G., Heuzé V., Ankers P., 2014. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 197, 1–33, https://doi.org/10.1016/j.anif....
 
50.
Mattiuzzo M., Bandiera A., Gennaro R., Benincasa M., Pacor S., Antcheva N., Scocchi M., 2007. Role of the Escherichia coli SbmA in the antimicrobial activity of proline-rich peptides. Mol. Microbiol. 66, 151–163, https://doi.org/10.1111/j.1365....
 
51.
McCoy A.J., Liu H., Falla T.J., Gunn J.S., 2001. Identification of Proteus mirabilis mutants with increased sensitivity to antimicrobial peptides. Antimicrob. Agents Chemother. 45, 2030–2037, https://doi.org/10.1128/AAC.45....
 
52.
McPhee J.B., Scott M.G., Hancock R.E.W., 2005. Design of host defence peptides for antimicrobial and immunity enhancing activities. Comb. Chem. High Throughput Screen 8, 257–272, https://doi.org/10.2174/138620....
 
53.
Narayanan S., Modak J.K., Ryan C.S., Garcia-Bustos J., Davies J.K., Roujeinikova A., 2014. Mechanism of Escherichia coli resistance to pyrrhocoricin. Antimicrob. Agents Chemother. 58, 2754–2762, https://doi.org/10.1128/AAC.02....
 
54.
Nicolas P., 2009. Multifunctional host defence peptides: intracellular-targeting antimicrobial peptides. FEBS J. 276, 6483–6496, https://doi.org/10.1111/j.1742....
 
55.
Ouellette A.J., Darmoul D., Tran D., Huttner K.M., Yuan J., Selsted M.E., 1999. Peptide localization and gene structure of cryptdin 4, a differentially expressed mouse paneth cell α-defensin. Infect. Immun. 67, 6643–6651.
 
56.
Park S.-I., Chang B.S., Yoe S.M., 2014. Detection of antimicrobial substances from larvae of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae). Entomol. Res. 44, 58–64, https://doi.org/10.1111/1748-5....
 
57.
Park Y., Hahm K.-S., 2005. Antimicrobial peptides (AMPs): peptide structure and mode of action. J. Biochem. Mol. Biol. 38, 507–516, https://doi.org/10.5483/bmbrep....
 
58.
Park S.-I., Kim J.-W., Yoe S.M., 2015. Purification and characterization of a novel antibacterial peptide from black soldier fly (Hermetia illucens) larvae. Dev. Comp. Immunol. 52, 98–106, https://doi.org/10.1016/j.dci.....
 
59.
Peschel A., Vuong C., Otto M., Götz F., 2000. The D-alanine residues of Staphylococcus aureus teichoic acids alter the susceptibility to vancomycin and the activity of autolytic enzymes. Antomicrob. Agents Chemother. 44, 2845–2847, https://doi.org/10.1128/AAC.44....
 
60.
Ratcliffe N.A., Mello C.B., Garcia E.S., Butt T.M., Azambuja P., 2011. Insect natural products and processes: New treatments for human disease. Insect Biochem. Mol. Biol. 41, 747–769, https://doi.org/10.1016/j.ibmb....
 
61.
Rodríguez-Rojas A., Makarova O., Rolff J., 2014. Antimicrobials, stress and mutagenesis. PLoS Pathog. 10, e1004445, https://doi.org/10.1371/journa....
 
62.
Rotem S., Mor A., 2009. Antimicrobial peptide mimics for improved therapeutic properties. Biochim. Biophys. Acta-Biomembr. 178, 1582–1592, https://doi.org/10.1016/j.bbam....
 
63.
Sánchez-Muros M.J., Barroso F.G., Manzano-Agugliaro F., 2014. Insect meal as renewable source of food for animal feeding: a review. J. Clean. Prod. 65, 16–27, https://doi.org/10.1016/j.jcle....
 
64.
Schiappa J., Van Hee R., 2012. From ants to staples: history and ideas concerning suturing techniques. Acta Chir. Belg. 2012, 112, 395–402, https://doi.org/10.1080/000154....
 
65.
Seo M.-D., Won H.-S., Kim J.-H., Mishig-Ochir T., Lee B.-J., 2012. Antimicrobial peptides for therapeutic applications: a review. Molecules 17, 12276–12286, https://doi.org/10.3390/molecu....
 
66.
Shafer W.M., Qu X.-D., Waring A.J., Lehrer R.I., 1998. Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. Proc. Natl. Acad. Sci. USA 95, 1829–1833, https://doi.org/10.1073/pnas.9....
 
67.
Steiner H., Hultmark D., Engström A., Bennich H., Boman H.G., 1981. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292, 246–248, https://doi.org/10.1038/292246....
 
68.
Stumpe S., Schmid R., Stephens D.L., Georgiou G., Bakker E.P., 1998. Identification of OmpT as the protease that hydrolyzes the antimicrobial peptide protamine before it enters growing cells of Escherichia coli. J. Bacteriol. 180, 4002–4006.
 
69.
Sun H.-X., Chen L.-Q., Zhang J., Chen F.-Y., 2014. Anti-tumor and immunomodulatory activity of peptide fraction from the larvae of Musca domestica. J. Ethnopharmacol. 153, 831–839, https://doi.org/10.1016/j.jep.....
 
70.
Tang X., Fatufe A.A., Yin Y., Tang Z., Wang S., Liu Z., Xinwu, Li T.-J., 2012. Dietary supplementation with recombinant lactoferrampin-lactoferricin improves growth performance and affects serum parameters in piglets. J. Anim. Vet. Adv. 11, 2548–2555, https://doi.org/10.3923/javaa.....
 
71.
Tang Z., Yin Y., Zhang Y. et al., 2009. Effects of dietary supplementation with an expressed fusion peptide bovine lactoferricin-lactoferrampin on performance, immune function and intestinal mucosal morphology in piglets weaned at age 21 d. Br. J. Nutr. 101, 998–1005, https://doi.org/10.1017/S00071....
 
72.
Uvell H., Engström Y., 2007. A multilayed defense against infection: combinatorial control of insect immune genes. Trends Genet. 23, 342–349, https://doi.org/10.1016/j.tig.....
 
73.
Wang Y.-Z., Shan T.-Z., Xu Z.-R., Feng J., Wang Z.-Q., 2007. Effects of the lactoferrin (LF) on the growth performance, intestinal microflora and morphology of weanling pigs. Anim. Feed Sci. Technol. 135, 263–272, https://doi.org/10.1016/j.anif....
 
74.
Wang S., Zeng X., Yang Q., Qiao S., 2016. Antimicrobial peptides as potential alternatives to antibiotics in food animal industry. Int. J. Mol. Sci. 17, 603–614, https://doi.org/10.3390/ijms17....
 
75.
Wen L.-F., He J.-G., 2012. Dose-response effects of an antimicrobial peptide, a cecropin hybrid, on growth performance, nutrient utilisation, bacterial counts in the digesta and intestinal morphology in broilers. Br. J. Nutr. 108, 1756–1763, https://doi.org/10.1017/S00071....
 
76.
Wu S., Zhang F., Huang Z., Liu H., Xie C., Zhang J., Thacker P.A., Qiao S., 2012. Effects of the antimicrobial peptide cecropin AD on performance and intestinal health in weaned piglets challenged with Escherichia coli. Peptides 35, 225–230, https://doi.org/10.1016/j.pept....
 
77.
Xiao H., Shao F., Wu M., Ren W., Xiong X., Tan B., Yin Y., 2015a. The application of antimicrobial peptides as growth and health promoters for swine. J. Anim. Sci. Biotechnol. 6, 19, https://doi.org/10.1186/s40104....
 
78.
Xiao H., Tan B.E., Wu M.M., Yin Y.L., Li T.J., Yuan D.X., Li L., 2013a. Effects of composite antimicrobial peptides in weanling piglets challenged with deoxynivalenol: II. Intestinal morphology and function. J. Anim. Sci. 91, 4750–4756, https://doi.org/10.2527/jas.20....
 
79.
Xiao H., Wu M.M., Shao F.Y. et al., 2015b. Metabolic profiles in the response to supplementation with composite antimicrobial peptides in piglets challenged with deoxynivalenol. J. Anim. Sci. 93, 1114–1123, https://doi.org/10.2527/jas.20....
 
80.
Xiao H., Wu M.M., Tan B.E., Yin Y.L., Li T.J., Xiao D.F., Li L., 2013b. Effects of composite antimicrobial peptides in weanling piglets challenged with deoxynivalenol: I. Growth performance, immune function, and antioxidation capacity. J. Anim. Sci. 91, 4772–4780, https://doi.org/10.2527/jas.20....
 
81.
Xiong X., Yang H.S., Li L., Wang Y.F., Huang R.L., Li F.N., Wang S.P., Qiu W., 2014. Effects of antimicrobial peptides in nursery diets on growth performance of pigs reared on five different farms. Livest. Sci. 167, 206–210, https://doi.org/10.1016/j.livs....
 
82.
Yi H.-Y., Chowdhury M., Huang Y.-D., Yu X.-Q., 2014. Insect antimicrobial peptides and their applications. Appl. Microbiol. Biotechnol. 98, 58075807–5822, https://doi.org/10.1007/s00253....
 
83.
Yoon J.H., Ingale S.L., Kim J.S., Kim K.H., Lee S.H., Park Y.K., Kwon I.K., Chae B.J., 2012. Effects of dietary supplementation of antimicrobial peptide-A3 on growth performance, nutrient digestibility, intestinal and fecal microflora and intestinal morphology in weanling pigs. Anim. Feed Sci. Technol. 177, 98–107, https://doi.org/10.1016/j.anif....
 
84.
Yoon J.H., Ingale S.L., Kim J.S., Kim K.H., Lee S.H., Park Y.K., Lee S.C., Kwon I.K., Chae B.J., 2014. Effects of dietary supplementation of synthetic antimicrobial peptide-A3 and P5 on growth performance, apparent total tract digestibility of nutrients, fecal and intestinal microflora and intestinal morphology in weanling pigs. Livest. Sci. 159, 53–60, https://doi.org/10.1016/j.livs....
 
85.
Yoon J.H., Ingale S.L., Kim J.S., Kim K.H., Lohakare J., Park Y.K., Park J.C., Kwon I.K., Chae B.J., 2013. Effects of dietary supplementation with antimicrobial peptide-P5 on growth performance, apparent total tract digestibility, faecal and intestinal microflora and intestinal morphology of weanling pigs. J. Sci. Food Agric. 93, 587–592, https://doi.org/10.1002/jsfa.5....
 
86.
Żyłowska M., Wyszyńska A., Jagusztyn-Krynicka E.K., 2011. Antimicrobial peptides – defensins (in Polish). Post. Mikrobiol. 50, 223–234.
 
 
CITATIONS (123):
1.
In silico identification, characterization and expression analysis of attacin gene family in response to bacterial and fungal pathogens in Tenebrio molitor
Yong Hun Jo, Soyi Park, Ki Beom Park, Mi Young Noh, Jun Ho Cho, Hye Jin Ko, Chang Eun Kim, Bharat Bhusan Patnaik, Jin Kim, Ran Won, In Seok Bang, Yong Seok Lee, Yeon Soo Han
Entomological Research
 
2.
Full-fat insect meals as feed additive – the effect on broiler chicken growth performance and gastrointestinal tract microbiota
A. Józefiak, B. Kierończyk, M. Rawski, J. Mazurkiewicz, A. Benzertiha, Paola Gobbi, S. Nogales-Merida, S. Świątkiewicz, D. Józefiak
Journal of Animal and Feed Sciences
 
3.
Can diets containing insects promote animal health?
L. Gasco, M. Finke, A. van Huis
Journal of Insects as Food and Feed
 
4.
Insect meals in fish nutrition
Silvia Nogales-Mérida, Paola Gobbi, Damian Józefiak, Jan Mazurkiewicz, Krzysztof Dudek, Mateusz Rawski, Bartosz Kierończyk, Agata Józefiak
Reviews in Aquaculture
 
5.
Insect Antimicrobial Peptides, a Mini Review
Qinghua Wu, Jiří Patočka, Kamil Kuča
Toxins
 
6.
A putative antimicrobial peptide from Hymenoptera in the megaplasmid pSCL4 of Streptomyces clavuligerus ATCC 27064 reveals a singular case of horizontal gene transfer with potential applications
Sebastián Ayala-Ruano, Daniela Santander-Gordón, Eduardo Tejera, Yunierkis Perez-Castillo, Vinicio Armijos-Jaramillo
Ecology and Evolution
 
7.
A case report on inVALUABLE: insect value chain in a circular bioeconomy
L.-H. Heckmann, J.L. Andersen, J. Eilenberg, J. Fynbo, R. Miklos, A.N. Jensen, J.V. Nørgaard, N. Roos
Journal of Insects as Food and Feed
 
8.
Consumer acceptance of insects as food and feed: the relevance of affective factors
M.C. Onwezen, den van, M.C.D. Verain, T. Veldkamp
Food Quality and Preference
 
9.
Review: Insect meal: a future source of protein feed for pigs?
K. DiGiacomo, B. Leury
animal
 
10.
Tenebrio molitor and Zophobas morio full-fat meals as functional feed additives affect broiler chickens’ growth performance and immune system traits
A Benzertiha, B Kierończyk, P Kołodziejski, E Pruszyńska–Oszmałek, M Rawski, D Józefiak, A Józefiak
Poultry Science
 
11.
Effects of insect diets on the gastrointestinal tract health and growth performance of Siberian sturgeon (Acipenser baerii Brandt, 1869)
Agata Józefiak, Silvia Nogales-Mérida, Mateusz Rawski, Bartosz Kierończyk, Jan Mazurkiewicz
BMC Veterinary Research
 
12.
Combined effect of the entomopathogenic fungus Metarhizium robertsii and avermectins on the survival and immune response of Aedes aegypti larvae
Yuriy Noskov, Olga Polenogova, Olga Yaroslavtseva, Olga Belevich, Yuriy Yurchenko, Ekaterina Chertkova, Natalya Kryukova, Vadim Kryukov, Viktor Glupov
PeerJ
 
13.
Antibacterial activity of a Tribolium castaneum defensin in an in vitro infection model of Streptococcus pneumoniae
Nora Lindhauer, Wilhelm Bertrams, Anne Pöppel, Christina Herkt, Andre Wesener, Kerstin Hoffmann, Brandon Greene, Der Van, Andreas Vilcinskas, Kerstin Seidel, Bernd Schmeck
Virulence
 
14.
Insect larvae, Hermetia illucens in poultry by-product meal for barramundi, Lates calcarifer modulates histomorphology, immunity and resistance to Vibrio harveyi
Md Chaklader, Muhammad Siddik, Ravi Fotedar, Janet Howieson
Scientific Reports
 
15.
Insect Cecropins, Antimicrobial Peptides with Potential Therapeutic Applications
Daniel Brady, Alessandro Grapputo, Ottavia Romoli, Federica Sandrelli
International Journal of Molecular Sciences
 
16.
Replacement of soybean oil by Hermetia illucens fat in turkey nutrition: effect on performance, digestibility, microbial community, immune and physiological status and final product quality
J. Sypniewski, B. Kierończyk, A. Benzertiha, Z. Mikołajczak, E. Pruszyńska-Oszmałek, P. Kołodziejski, M. Sassek, M. Rawski, W. Czekała, D. Józefiak
British Poultry Science
 
17.
Listeria dynamics in a laboratory-scale food chain of mealworm larvae (Tenebrio molitor) intended for human consumption
Luca Belleggia, Vesna Milanović, Federica Cardinali, Cristiana Garofalo, Marina Pasquini, Stefano Tavoletti, Paola Riolo, Sara Ruschioni, Nunzio Isidoro, Francesca Clementi, Athanasios Ntoumos, Lucia Aquilanti, Andrea Osimani
Food Control
 
18.
Improvement of Cecal Commensal Microbiome Following the Insect Additive into Chicken Diet
Agata Józefiak, Abdelbasset Benzertiha, Bartosz Kierończyk, Anna Łukomska, Izabela Wesołowska, Mateusz Rawski
Animals
 
19.
Insect and fish by-products as sustainable alternatives to conventional animal proteins in animal nutrition
Laura Gasco, Gabriele Acuti, Paolo Bani, Zotte Dalle, Pier Danieli, Angelis De, Riccardo Fortina, Rosaria Marino, Giuliana Parisi, Giovanni Piccolo, Luciano Pinotti, Aldo Prandini, Achille Schiavone, Genciana Terova, Francesca Tulli, Alessandra Roncarati
Italian Journal of Animal Science
 
20.
ПОЛУЧЕНИЕ ВОДОРАСТВОРИМЫХ ПЕПТИДОВ ИЗ БИОМАССЫ ЛИЧИНОК MUSCA DOMESTICA И ИЗУЧЕНИЕ ИХ СВОЙСТВ
Крылова Л.С., Ремизов Е.К., Смирнова К.Ю., Сорокатая Е.И., Древко Я.Б.
Bulletin of KSAU
 
21.
An Enhanced Variant Designed From DLP4 Cationic Peptide Against Staphylococcus aureus CVCC 546
Bing Li, Na Yang, Xiumin Wang, Ya Hao, Ruoyu Mao, Zhanzhan Li, Zhenlong Wang, Da Teng, Jianhua Wang
Frontiers in Microbiology
 
22.
Potential of Black Soldier Fly Production for Pacific Small Island Developing States
Matan Shelomi
Animals
 
23.
Antioxidant Status and Liver Function of Young Turkeys Receiving a Diet with Full-Fat Insect Meal from Hermetia illucens
Katarzyna Ognik, Krzysztof Kozłowski, Anna Stępniowska, Piotr Listos, Damian Józefiak, Zenon Zduńczyk, Jan Jankowski
Animals
 
24.
Locusta migratoria extruded meal in young steers diet: evaluation of growth performance, blood indices and meat traits of Calves Kasakh white-headed breed
Ivan Gorlov, Marina Slozhenkina, Natalia Mosolova, Vladimir Grishin, Aleksandr Mosolov, Elena Bondarkova, Elena Anisimova, Yulia Starodubova, Svetlana Brekhova, Pavel Andreev-Chadaev
Journal of Applied Animal Research
 
25.
Bacterial but not fungal challenge up-regulates the transcription of Coleoptericin genes in Tenebrio molitor
Ho Jang, Ki Park, Bo Kim, Mohammadie Ali, Young Bae, Snigdha Baliarsingh, Yong Lee, Yeon Han, Yong Jo
Entomological Research
 
26.
Biosurfactants Induce Antimicrobial Peptide Production through the Activation of TmSpatzles in Tenebrio molitor
Tariku Edosa, Yong Jo, Maryam Keshavarz, In Kim, Yeon Han
International Journal of Molecular Sciences
 
27.
Growth Performance and Adaptability of European Sea Bass (Dicentrarchus labrax) Gut Microbiota to Alternative Diets Free of Fish Products
David Pérez-Pascual, Jordi Estellé, Gilbert Dutto, Charles Rodde, Jean-François Bernardet, Yann Marchand, Eric Duchaud, Cyrille Przybyla, Jean-Marc Ghigo
Microorganisms
 
28.
Antioxidant enzyme regulating and intracellular ROS scavenging capacities of two novel bioactive peptides from white grub larvae (Polyphylla adstpersa) hydrolysate in A549 cells
Asal Khajepour-Zaveh, Ahmad Asoodeh, Hossein Naderi-Manesh
Medicinal Chemistry Research
 
29.
A bioinformatic study of antimicrobial peptides identified in the Black Soldier Fly (BSF) Hermetia illucens (Diptera: Stratiomyidae)
Antonio Moretta, Rosanna Salvia, Carmen Scieuzo, Somma Di, Heiko Vogel, Pietro Pucci, Alessandro Sgambato, Michael Wolff, Patrizia Falabella
Scientific Reports
 
30.
Enhanced Antioxidant and Cytotoxic Potentials of Lipopolysaccharides-Injected Musca domestica Larvae
Islam El-Garawani, Hesham El-Seedi, Shaden Khalifa, Azab El, Marwa Abouhendia, Shaymaa Mahmoud
Pharmaceutics
 
31.
Gut immunity in European sea bass (Dicentrarchus labrax): a review
S. Picchietti, A. Miccoli, A.M. Fausto
Fish & Shellfish Immunology
 
32.
Last Call for Replacement of Antimicrobials in Animal Production: Modern Challenges, Opportunities, and Potential Solutions
Aneta Nowakiewicz, Przemysław Zięba, Sebastian Gnat, Łukasz Matuszewski
Antibiotics
 
33.
Alternative Protein Sources vs. GM Soybean Meal as Feedstuff for Pigs—Meat Quality and Health-Promoting Indicators
Marcin Sońta, Anna Rekiel, Justyna Więcek, Martyna Batorska, Kamila Puppel
Animals
 
34.
Use of black soldier fly and house fly in feed to promote sustainable poultry production
A. Dörper, T. Veldkamp, M. Dicke
Journal of Insects as Food and Feed
 
35.
Beyond the protein concept: health aspects of using edible insects on animals
L. Gasco, A. Józefiak, M. Henry
Journal of Insects as Food and Feed
 
36.
The effect of dietary full-fat Hermetia illucens larvae meal on gut physiology and growth performance in young turkeys
Jan Jankowski, Krzysztof Kozłowski, Zenon Zduńczyk, Anna Stępniowska, Katarzyna Ognik, Bartosz Kierończyk, Damian Józefiak, Jerzy Juśkiewicz
Animal Feed Science and Technology
 
37.
Total replacement of fish meal by enriched‐fatty acid Hermetia illucens meal did not substantially affect growth parameters or innate immune status and improved whole body biochemical quality of Nile tilapia juveniles
Pamphile Agbohessou, Syaghalirwa Mandiki, Armel Gougbédji, Rudy Megido, Md. Hossain, Jaeger De, Yvan Larondelle, Frédéric Francis, Philippe Lalèyè, Patrick Kestemont
Aquaculture Nutrition
 
38.
Feasibility of superworm, Zophobas morio , meal as a partial fishmeal replacer in fingerling rainbow trout, Oncorhynchus mykiss , diet: growth performance, amino acid profile, proteolytic enzymes activity and pigmentation
Shekarabi Hosseini, Mehrgan Shamsaie, Akbar Banavreh
Aquaculture Nutrition
 
39.
Identification of a novel proline‐rich antimicrobial protein from the hemolymph of Antheraea mylitta
Trinath Chowdhury, Santi Mandal, Soumita Dutta, Ananta Ghosh
Archives of Insect Biochemistry and Physiology
 
40.
Antibacterial activity of selected invertebrate species
Salwa Ali, Ruqaiyayh Siddiqui, Kuppusamy Sagathevan, Naveed Khan
Folia Microbiologica
 
41.
Performance, nutrient digestibility and selected gut health parameters of broilers fed with black soldier fly, lesser mealworm and yellow mealworm
der Van, J.V. Nørgaard, R.M. Engberg
Journal of Insects as Food and Feed
 
42.
Proteomic Study Reveals Major Pathways Regulating the Development of Black Soldier Fly
Leihao Lu, Quan Wan, Yalan Xu, Honglan Shen, Mingying Yang
Journal of Proteome Research
 
43.
Do insects smell attractive to dogs? A comparison of dog reactions to insects and commercial feed aromas – a preliminary study
Bartosz Kierończyk, Mateusz Rawski, Pola Pawełczyk, Joanna Różyńska, Julia Golusik, Zuzanna Mikołajczak, Damian Józefiak
Annals of Animal Science
 
44.
The Utilization of Full-Fat Insect Meal in Rainbow Trout (Oncorhynchus mykiss) Nutrition: The Effects on Growth Performance, Intestinal Microbiota and Gastrointestinal Tract Histomorphology
Agata Józefiak, Silvia Nogales-Mérida, Zuzanna Mikołajczak, Mateusz Rawski, Bartosz Kierończyk, Jan Mazurkiewicz
Annals of Animal Science
 
45.
Effect of dietary lupine seeds (Lupinus luteus L.) and different insect larvae meals as protein sources in broiler chicken diet on growth performance, carcass, and meat quality
M. Pietras, S. Orczewska-Dudek, W. Szczurek, M. Pieszka
Livestock Science
 
46.
Antimicrobial peptides as an additive in broiler chicken nutrition: a meta-analysis of bird performance, nutrient digestibility and serum metabolites
M. Sholikin, S. Sadarman, A. Irawan, T. Prihambodo, N. Qomariyah, A. Wahyudi, J. Nomura, N. Nahrowi, A. Jayanegara
Journal of Animal and Feed Sciences
 
47.
Growth performance, immune status and intestinal fermentative processes of young turkeys fed diet with additive of full fat meals from Tenebrio molitor and Hermetia illucens
Krzysztof Kozłowski, Katarzyna Ognik, Anna Stępniowska, Jerzy Juśkiewicz, Zenon Zduńczyk, Bartosz Kierończyk, Abdelbasset Benzertiha, Damian Józefiak, Jan Jankowski
Animal Feed Science and Technology
 
48.
Antimicrobial Peptides from Black Soldier Fly (Hermetia illucens) as Potential Antimicrobial Factors Representing an Alternative to Antibiotics in Livestock Farming
Jing Xia, Chaorong Ge, Huaiying Yao
Animals
 
49.
Bioactive properties of insect products for monogastric animals – a review
T. Veldkamp, L. Dong, A. Paul, C. Govers
Journal of Insects as Food and Feed
 
50.
Mealworm meal use in sea trout ( Salmo trutta m. trutta , L.) fingerling diets: effects on growth performance, histomorphology of the gastrointestinal tract and blood parameters
Lilianna Hoffmann, Mateusz Rawski, Silvia Nogales‐Mérida, Paweł Kołodziejski, Ewa Pruszyńska‐Oszmałek, Jan Mazurkiewicz
Aquaculture Nutrition
 
51.
Efficiency of fatty acid-enriched dipteran-based meal on husbandry, digestive activity and immunological responses of Nile tilapia Oreochromis niloticus juveniles
Pamphile Agbohessou, Syaghalirwa Mandiki, Armel Gougbédji, Rudy Megido, Lil-Marlys Lima, Valérie Cornet, Jérôme Lambert, Giorgia Purcaro, Frédéric Francis, Philippe Lalèyè, Patrick Kestemont
Aquaculture
 
52.
Partial and Total Replacement of Soybean Meal with Full-Fat Black Soldier Fly (Hermetia illucens L.) Larvae Meal in Broiler Chicken Diets: Impact on Growth Performance, Carcass Quality and Meat Quality
Daria Murawska, Tomasz Daszkiewicz, Wiesław Sobotka, Michał Gesek, Dorota Witkowska, Paulius Matusevičius, Tadeusz Bakuła
Animals
 
53.
昆虫の飼料利用に関する研究動向と今後の課題
淨教 川﨑
Nihon Chikusan Gakkaiho
 
54.
In Silico Characterization of a Transcript Code Based Screening of Antimicrobial Peptide from Trichogramma chilonis
S. Sunil, O. Kerima, H. Kumar, B. Prabhakar, S. Pramod, P. Niranjana
International Journal of Peptide Research and Therapeutics
 
55.
The possibilities of alternative protein use in animal nutrition
O Djuragic, S Rakita, D Dragojlovic
IOP Conference Series: Earth and Environmental Science
 
56.
Potentiality of Melittin-Loaded Niosomal Vesicles Against Vancomycin-Intermediate Staphylococcus aureus and Staphylococcal Skin Infection
Sirikwan Sangboonruang, Natthawat Semakul, Mohammad Obeid, Marta Ruano, Kuntida Kitidee, Usanee Anukool, Kidsadagon Pringproa, Panuwan Chantawannakul, Valerie Ferro, Yingmanee Tragoolpua, Khajornsak Tragoolpua
International Journal of Nanomedicine
 
57.
Digestibility of insect meals for Pacific white shrimp (Litopenaeus vannamei) and their performance for growth, feed utilization and immune responses
Jaehyeong Shin, Kyeong-Jun Lee, Mahmoud Dawood
PLOS ONE
 
58.
Arthropods - Are They Beneficial for Mankind?
Cordelia Ebenebe, Simon Okweche, Oghale Okore, Valentine Okpoko, Maduabuchi Amobi, Eze Nneamaka, Benedeth Ezenyilimba, Michael Okonkwo
 
59.
Stapled Anoplin as an Antibacterial Agent
Monika Wojciechowska, Julia Macyszyn, Joanna Miszkiewicz, Renata Grzela, Joanna Trylska
Frontiers in Microbiology
 
60.
Effects of dietary housefly larvae ( Musca domestica ) on the growth performance, immunity and intestinal microbiota of Chinese soft‐shelled turtle ( Pelodiscus sinensis )
Tengba Fan, Jinhua Xiang, Lu Qin, Wenxiang Li, Ming Li, Hong Zou, Kaibo Song, Shangong Wu, Guitang Wang
Aquaculture Research
 
61.
Insects usage in pets food
Ibrar AHMED, Fatma İNAL, Roshan RİAZ
Veteriner Hekimler Derneği Dergisi
 
62.
Insect meal as a feed ingredient for poultry
Usman Elahi, Chang-chun Xu, Jing Wang, Jing Lin, Shu-geng Wu, Hai-jun Zhang, Guang-hai Qi
Animal Bioscience
 
63.
A critical review of intrinsic and extrinsic antimicrobial properties of insects
Saadoun Hadj, Giovanni Sogari, Valentina Bernini, Chiara Camorali, Flavia Rossi, Erasmo Neviani, Camilla Lazzi
Trends in Food Science & Technology
 
64.
Reference Module in Food Science
Sandra Borges, Pedro Sousa, Manuela Pintado
 
65.
Curcumin-Injected Musca domestica Larval Hemolymph: Cecropin Upregulation and Potential Anticancer Effect
Shaymaa Mahmoud, El-Nabi Hassab, Asmaa Hawash, Hesham El-Seedi, Shaden Khalifa, Sami Ullah, Abdullah Al-Sehemi, Islam El-Garawani
Molecules
 
66.
Overcoming Technical and Market Barriers to Enable Sustainable Large-Scale Production and Consumption of Insect Proteins in Europe: A SUSINCHAIN Perspective
Teun Veldkamp, Nathan Meijer, Frank Alleweldt, David Deruytter, Campenhout Van, Laura Gasco, Nanna Roos, Sergiy Smetana, Ana Fernandes, der van
Insects
 
67.
Antimicrobial Peptides: Bringing Solution to the Rising Threats of Antimicrobial Resistance in Livestock
Shamsaldeen Saeed, AhmedElmontaser Mergani, Erkihun Aklilu, Nor Kamaruzzman
Frontiers in Veterinary Science
 
68.
The first insight into black soldier fly meal in brown trout nutrition as an environmentally sustainable fish meal replacement
Z. Mikołajczak, M. Rawski, J. Mazurkiewicz, B. Kierończyk, P. Kołodziejski, E. Pruszyńska-Oszmałek, D. Józefiak
Animal
 
69.
Effects of eri silkworm (Samia ricini) pupae inclusion in broiler diets on growth performances, health, carcass characteristics and meat quality
Penpicha Kongsup, Somporn Lertjirakul, Banthari Chotimanothum, Pipatpong Chundang, Attawit Kovitvadhi
Animal Bioscience
 
70.
Dietary Fish Meal Replacement with Hermetia illucens and Tenebrio molitor Larval Meals Improves the Growth Performance and Nutriphysiological Status of Ide (Leuciscus idus) Juveniles
Natalia Homska, Joanna Kowalska, Joanna Bogucka, Ewa Ziółkowska, Mateusz Rawski, Bartosz Kierończyk, Jan Mazurkiewicz
Animals
 
71.
Edible insects: non-food and non-feed industrial applications
Huis van
Journal of Insects as Food and Feed
 
72.
Characterization of anti-microbial peptides and proteins from maggots of Calliphoridae and Sarcophagidae fly species (Diptera)
Kyungjae Yoon, Woo-Jin Kim, Hanna Cho, Hyeokjun Yoon, Neung-Ho Ahn, Byoung-Hee Lee, Si Lee
Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology
 
73.
Available for millions of years but discovered through the last decade: Insects as a source of nutrients and energy in animal diets
Bartosz Kierończyk, Mateusz Rawski, Zuzanna Mikołajczak, Natalia Homska, Jan Jankowski, Katarzyna Ognik, Agata Józefiak, Jan Mazurkiewicz, Damian Józefiak
Animal Nutrition
 
74.
Economic viability of insect meal as a novel ingredient in diets for broiler chickens
M.N. Tavares, R.T. Pereira, A. Lapa, L.R. Lemes, J.F.M. Menten, A.H. Gameiro
Journal of Insects as Food and Feed
 
75.
Synthetic Peptides against Plant Pathogenic Bacteria
Esther Badosa, Marta Planas, Lidia Feliu, Laura Montesinos, Anna Bonaterra, Emilio Montesinos
Microorganisms
 
76.
A Potential Insect Antimicrobial of Black Soldier Fly Larvae (Hermetia illucens) against Pathogenic Bacteria
Diyantoro Diyantoro, Sundari Siti, Jariah Ainun, Dwi Indriati, Dwi Indriani
Research Journal of Pharmacy and Technology
 
77.
Delivery of Melittin as a Lytic Agent via Graphene Nanoparticles as Carriers to Breast Cancer Cells
Karolina Daniluk, Agata Lange, Michał Pruchniewski, Artur Małolepszy, Ewa Sawosz, Sławomir Jaworski
Journal of Functional Biomaterials
 
78.
Microbes for Natural Food Additives
Charles Okoye, Emmanuel Okeke, Timothy Ezeorba, Kingsley Chukwudozie, Chike Chiejina, Temgoua Fomena
 
79.
Effects of Hermetia illucens Larvae Meal and Astaxanthin as Feed Additives on Health and Production Indices in Weaned Pigs
Kinga Szczepanik, Iwona Furgał-Dierżuk, Łukasz Gala, Małgorzata Świątkiewicz
Animals
 
80.
Insect biorefinery: A circular economy concept for biowaste conversion to value-added products
Phei Kee, Yu-Shen Cheng, Jo-Shu Chang, Hip Yim, Tan Yee, Su Lam, Lan Chi-Wei, Hui Ng, Kuan Khoo
Environmental Research
 
81.
Effect of feeding a diet containing housefly (Musca domestica) larvae extracts on growth performance in broiler chickens
Sang-O Park
Czech Journal of Animal Science
 
82.
Effects of Partial Replacement of Soybean Meal with Defatted Hermetia illucens Meal in the Diet of Laying Hens on Performance, Dietary Egg Quality, and Serum Biochemical and Redox Indices
Patrycja Zawisza, Beata Szymczyk, Anna Arczewska-Włosek, Kinga Szczepanik
Animals
 
83.
Bioactive Peptide Discovery from Edible Insects for Potential Applications in Human Health and Agriculture
Yixian Quah, Shi-Ruo Tong, Joanna Bojarska, Katrin Giller, Sheri-Ann Tan, Zyta Ziora, Tuba Esatbeyoglu, Tsun-Thai Chai
Molecules
 
84.
Advancements in Materials Science and Technology Led by Women
Nur Ramzah, Tong Yenn, Wing-Hin Lee, Ching-Yee Loo, Wen-Nee Tan, Leong Ring
 
85.
Tenebrio meal as a functional ingredient modulates immune response and improves growth performance of broiler chickens.
J.M.M. Andrade, R.T. Pereira, Paula de, H. Junior, J.F.M. Menten
Journal of Applied Poultry Research
 
86.
Do antimicrobial peptide levels alter performance of insect-based aquaculture feeds – a study using genetic models of insect immune activation
N.A. Sibinga, M.T. Lee, N. Buchon, E.L. Johnson, V. Selvaraj, H. Marquis
Journal of Insects as Food and Feed
 
87.
Effects of dietary substitution of fishmeal by black soldier fly (Hermetia illucens) meal on growth performance, whole-body chemical composition, and fatty acid profile of Pontastacus leptodactylus juveniles
Maria Alvanou, Anastasia Kyriakoudi, Vasiliki Makri, Athanasios Lattos, Konstantinos Feidantsis, Dimitrios Papadopoulos, Ioannis Georgoulis, Apostolos Apostolidis, Basile Michaelidis, Ioannis Mourtzinos, Adamantia Asimaki, Ioannis Karapanagiotidis, Ioannis Giantsis
Frontiers in Physiology
 
88.
Insect Antimicrobial Peptides: Advancements, Enhancements and New Challenges
Matteo Dho, Valentina Candian, Rosemarie Tedeschi
Antibiotics
 
89.
Post-breeding waste from Zophobas morio for biogas and energy generation via anaerobic methane fermentation
Piotr Bulak, Kinga Proc-Pietrycha, Monika Kaczor, Małgorzata Pawłowska, Andrzej Bieganowski
Fuel
 
90.
Insect Meals and Insect Antimicrobial Peptides as an Alternative for Antibiotics and Growth Promoters in Livestock Production
Ewelina Patyra, Krzysztof Kwiatek
Pathogens
 
91.
Hermetia illucens as a source of antimicrobial peptides – a review of in vitro and in vivo studies
Kinga Szczepanik, Małgorzata Świątkiewicz
Annals of Animal Science
 
92.
Isolation of antimicrobial peptides from seed harvester ant, Trichomyrmex scabriceps (Mayr) (Hymenoptera: Formicidae) and their antimicrobial assay
Hubballi Aravinda, Shivakumara Thammayya, Krishanappa Chandrashekara, Rani Thammaiah, Ryan Casini, M. R., Hosam Elansary, Ahmed El-Sabrout
Arabian Journal of Chemistry
 
93.
Understanding the Nutritional Value of Insect Products Intended for Animal Feed is the Key to Unlock Their Full Potential
Sashka Chobanova, Nikolay Karkelanov, Stephen Mansbridge, Isobel Whiting, Stephen Rose, Vasil Pirgozliev
 
94.
Potential use of black soldier fly, Hermetia illucens larvae in chicken feed as a protein replacer: a review
M. Zamri, S. Ramiah, E. Jamein, I. Zulkifli, I. Lokman, F Amirul, S.A.A. Fadzlin, Zamri Mohd, A. Jayanegara, H. Hassim
Journal of Animal and Feed Sciences
 
95.
Effect of two insect meals on the gut commensal microbiome of healthy sea trout (Salmo trutta vr. trutta)
Agata Józefiak, Mateusz Rawski, Bartosz Kierończyk, Damian Józefiak, Jan Mazurkiewicz
BMC Veterinary Research
 
96.
Comparison of a Traditional Soybean Meal-Based Diet to a Defatted Black Soldier Fly Larvae Meal-Based Diet for Broilers
Sashka Chobanova, Nikolay Karkelanov, Stephen Mansbridge, Isobel Whiting, Antonija Simic, Stephen Rose, Vasil Pirgozliev
Poultry
 
97.
Partial and Total Replacement of Soybean Meal with maggot larvae meal in Broiler Chicken Diets: Impact on growth performance, nutrients digestibility, Haemotological Parameters and Intestinal Histomorphology
Momin Khan, Naila Chand, Sarzamin Khan, Shabana Naz, Abdulwahed Alrefaei, Mikhlid Almutairi, Dai Sifa, Rifat Khan
Livestock Science
 
98.
Black soldier fly pulp in the diet of golden pompano: Effect on growth performance, liver antioxidant and intestinal health
Zuzhe Li, Chengzong Han, Zanzan Wang, Zhenyu Li, Leshan Ruan, Heizhao Lin, Chuanpeng Zhou
Fish & Shellfish Immunology
 
99.
Improving the nutritional values of yellow mealworm Tenebrio molitor (Coleoptera: Tenebrionidae) larvae as an animal feed ingredient: a review
Linggawastu Syahrulawal, Magnhild Torske, Rumakanta Sapkota, Geir Næss, Prabhat Khanal
Journal of Animal Science and Biotechnology
 
100.
A Systematic Review and Metanalysis on the Use of Hermetia illucens and Tenebrio molitor in Diets for Poultry
Yuri Dalmoro, Carolina Franceschi, Catarina Stefanello
Veterinary Sciences
 
101.
Chitinase and Insect Meal in Aquaculture Nutrition: A Comprehensive Overview of the Latest Achievements
Imam Hasan, Francesco Gai, Simona Cirrincione, Simona Rimoldi, Giulio Saroglia, Genciana Terova
Fishes
 
102.
Sustainable Use of Feed Additives in Livestock
T. Veldkamp, I. Belghit, S. Chatzfiotis, M. Mastoraki, A. Jansman, G. Radhakrishnan, A. Schiavone, S. Smetana, L. Gasco
 
103.
Bioactive compounds and biological activity in edible insects: A review
Estrada Sánchez, Becerra Aguirre, Ana Feregrino-Pérez
Heliyon
 
104.
Unlocking the Potential of Substrate Quality for the Enhanced Antibacterial Activity of Black Soldier Fly against Pathogens
Mach P. Achuoth, Cynthia M. Mudalungu, Brian O. Ochieng, Hosea O. Mokaya, Shadrack Kibet, Vinesh J. Maharaj, Sevgan Subramanian, Segenet Kelemu, Chrysantus M. Tanga
ACS Omega
 
105.
Effect of feeding meal of yellow and lesser mealworm and defatted black soldier fly larvae on growth performance and gut health of weaned piglets
N Malla, N. Roos, M.E. Van der Heide, J.V. Nørgaard
Animal Feed Science and Technology
 
106.
Effect of dietary housefly maggot extract on egg production and egg quality in laying hens under a digital livestock system
Victor A. Zammit, Sang O. Park
Czech Journal of Animal Science
 
107.
Cecropin A: investigation of a host defense peptide with multifaceted immunomodulatory activity in a chicken hepatic cell culture
Rege Anna Márton, Csilla Sebők, Máté Mackei, Patrik Tráj, Júlia Vörösházi, Ágnes Kemény, Zsuzsanna Neogrády, Gábor Mátis
Frontiers in Veterinary Science
 
108.
Antimicrobial activity of a novel moricin-like peptide from the Chinese oak silkworm against Vibrio pathogens in sea cucumbers
Bo Ye, Shilei Li, Qi Fan, Zhenjun Zhao, Peipei Li, Dongmei Yue, Xuda Wang, Ying Dong, Danni Liu, Zunchun Zhou
Aquaculture Reports
 
109.
Pap12-6: A host defense peptide with potent immunomodulatory activity in a chicken hepatic cell culture
Rege Anna Márton, Csilla Sebők, Máté Mackei, Patrik Tráj, Júlia Vörösházi, Ágnes Kemény, Zsuzsanna Neogrády, Gábor Mátis, Tianwen Wang
PLOS ONE
 
110.
Insect Meal in Aquafeeds: A Sustainable Path to Enhanced Mucosal Immunity in Fish
SM Majharul Islam, Muhammad A.B. Siddik, Mette Sørensen, Monica F. Brinchmann, Kim D. Thompson, David S. Francis, Ioannis N. Vatsos
Fish & Shellfish Immunology
 
111.
Effects of Defatted and Hydrolyzed Black Soldier Fly Larvae Meal as an Alternative Fish Meal in Weaning Pigs
Jihwan Lee, Younguk Park, Dongcheol Song, Seyeon Chang, Jinho Cho
Animals
 
112.
Partial replacement of soybean meal with Musca domestica larvae meal in broiler diets: implications for growth performance, nutrient utilization, hemato-biochemical profile and organoleptic characteristics
Momin Khan, Naila Chand, Sarzamin Khan, Shabana Naz, Abdulwahed Fahad Alrefaei, Ananthanarayanan Chandrasekaran, Rifat Ullah Khan
Archives Animal Breeding
 
113.
Black soldier fly, mealworm and superworm: chemical composition and comparative effect on broiler growth
Stelios Vasilopoulos, Ilias Giannenas, Christos Athanassiou G., Christos Rumbos, Elias Papadopoulos, Paschalis Fortomaris
World's Poultry Science Journal
 
114.
Effect of Diets with the Addition of Edible Insects on the Development of Atherosclerotic Lesions in ApoE/LDLR−/− Mice
Hayat Hassen, Petra Škvorová, Kshitiz Pokhrel, Martin Kulma, Ewa Piątkowska, Renata B. Kostogrys, Lenka Kouřimská, Tomasz Tarko, Magdalena Franczyk-Żarów
International Journal of Molecular Sciences
 
115.
Applicability of Black Soldier Fly and Yellow Mealworm in municipal food waste bioconversion: Assessment of efficiency, nutritional proficiency, and safety
Mohammad Shojaaddini
Journal of Asia-Pacific Entomology
 
116.
Metabolizable Energy Value of Fat and Meals Obtained from Black Soldier Fly Larvae (Hermetia illucens) for Broiler Chickens
Sashka Chobanova, Nikolay Karkelanov, Stephen Charles Mansbridge, Isobel Margaret Whiting, Marko Tukša, Stephen Paul Rose, Vasil Radoslavov Pirgozliev
Poultry
 
117.
Handbook of Sourdough Microbiota and Fermentation
Dubravka Škrobot, Jelena Tomić, Nikola Maravić
 
118.
Potential applications of antimicrobial peptides from edible insects in the food supply chain: Uses in agriculture, packaging, and human nutrition
Fernando Rivero-Pino, Maria J. Leon, Sergio Montserrat-de la Paz
Food Bioscience
 
119.
Evolution of Antimicrobial Peptides
Aashis Dutta, Manas Das
 
120.
Evolution of Antimicrobial Peptides
Roy Dinata, Chettri Arati, Bose Manikandan, Giri Abinash, Buragohain Pori, Laskar Saeed-Ahmed, Rema Momin Bidanchi, Vikas Kumar Roy, G. Gurusubramanian
 
121.
The Biotechnological Potential of Crickets as a Sustainable Protein Source for Fishmeal Replacement in Aquafeed
Aldo Fraijo-Valenzuela, Joe Luis Arias-Moscoso, Oscar Daniel García-Pérez, Libia Zulema Rodriguez-Anaya, Jose Reyes Gonzalez-Galaviz
BioTech
 
122.
Inclusion of Tenebrio molitor larvae meal in the diet of barbary partridge (Alectoris barbara) improves caecal bacterial diversity and composition
Tiziana Maria Mahayri, Elie Atallah, Kateřina Olša Fliegerová, Jakub Mrázek, Giovanni Piccolo, Fulvia Bovera, Giuseppe Moniello
Scientific Reports
 
123.
Impacts of Black Soldier Fly (Hermetia illucens) Larval Meal on Intestinal Histopathology and Microbiome Responses in Hybrid Grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂): A Comprehensive Analysis
Yan Chen, Jun Ma, Yoong-Soon Yong, Yonggan Chen, Bing Chen, Junming Cao, Kai Peng, Guaxia Wang, Hai Huang, Jiun-Yan Loh
Animals
 
ISSN:1230-1388
Journals System - logo
Scroll to top