ORIGINAL PAPER
 
KEYWORDS
TOPICS
ABSTRACT
Additives and inoculants are the focus of silage research, as new additives and their combinations can improve fermentation and silage quality. We performed two trials evaluating two doses (4 and 8 g/t, wet weight) of natamycin as an additive to maize silage compared to a control without supplementation. In the first trial, we assessed fermentation losses, yeast count, chemical composition, and aerobic stability of maize silages stored in pilot-scale silos using four replicates per treatment. The second trial was designed to evaluate the voluntary intake and performance of lambs fed the treated silages prepared in bunker silos. The lambs (10 lambs/treatment) were kept in individual pens and fed twice daily a total-mixed ration containing one of the treated silages. The highest dose of natamycin decreased dry matter and gas losses. The yeast count in the silages from the bunker silos tended to increase (r = 0.92) over the weeks. There was no significant difference in voluntary feed intake or average daily gain of lambs fed natamycin silages compared to the control silage. Since high natamycin doses caused a decrease in fermentation losses in maize silage and exerted no deleterious effects on animal performance, this bacteriocin may soon be considered a potential component of silage additives.
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
METADATA IN OTHER LANGUAGES:
Chinese
玉米青贮料中添加纳他霉素不会对羔羊的生产性能和自由 采食量产生不利影响
摘要: 添加剂和菌剂是青贮饲料研究的重点,新的添加剂及其组合可以改善发酵和青贮料的品质。我们进行 了两项试验,评估了两种剂量(4 g和8 g t-1,湿重)的纳他霉素作为玉米青贮添加剂并与不添加的对照组做 比较。在第一个试验中,我们评估了在中试规模的筒仓中储存的玉米青贮料的发酵损失、酵母菌数量、化 学成分和有氧稳定性,每个处理使用四个重复。第二个试验旨在评估羔羊的自由采食量和生产性能,这些 羔羊饲喂的是在料仓中制备的经过处理青贮料。羔羊(10只羔羊/处理)采用单栏饲喂,每天饲喂两次含有 其中一种处理青贮料的混合日粮。最高剂量的纳他霉素减少了干物质和气体损失。筒仓青贮料中的酵母菌 数在几周内呈增加趋势(r = 0.92)。与对照组相比,饲喂纳他霉素青贮料的羔羊的自由采食量和平均日增重 无显著差异。由于高剂量纳他霉素添加的确降低了玉米青贮料的发酵损失,并且对动物生产性能没有不良 影响,这种细菌素可能很快就会被考虑作为青贮料添加剂的潜在成分。
REFERENCES (35)
1.
AOAC International, 1990. Official Methods of Analysis of AOAC International. 15th Edition. Arlington, VA (USA)
 
2.
AOAC International, 2012. Official Methods of Analysis of AOAC International. Gaithersburg, MD (USA)
 
3.
Aparicio J.F., Barreales E.G., Payero T.D., Vicente C.M., de Pedro A., Santos-Aberturas J., 2016. Biotechnological production and application of the antibiotic pimaricin: biosynthesis and its regulation. Appl. Microbiol. Biotechnol. 100, 61–78, https://doi.org/10.1007/s00253...
 
4.
Ashbell G., Weinberg Z.G., Hen Y., Filya I., 2002. The effects of temperature on the aerobic stability of wheat and corn silages. J. Ind. Microbiol. Biotechnol. 28, 261–263, https://doi.org/10.1038/sj/jim...
 
5.
Bernardes T., Nussio L., do Amaral R.C., 2012. Top spoilage losses in maize silage sealed with plastic films with different permeabilities to oxygen. Grass Forage Sci. 67, 34–42, https://doi.org/10.1111/j.1365...
 
6.
Boudra H., Morgavi D.P., 2008. Reduction in Fusarium toxin levels in corn silage with low dry matter and storage time. J. Agr. Food Chem. 56, 4523–4528, https://doi.org/10.1021/jf8002...
 
7.
Bravo-Martins C.E.C., Carneiro H., Castro-Gomez R.J.H., Figueiredo H.C.P., Schwan R.F., 2006. Chemical and microbiological evaluation of ensiled sugar cane with different additives. Braz. J. Microbiol. 37, 499–504, https://doi.org/10.1590/S1517-...
 
8.
Bueno A.V.I., Vigne G.L.D., Novinski C.O., Bayer C., Jobim C.C., Schmidt P., 2020. Natamycin as a potential silage additive: a lab trial using sugarcane to assess greenhouse gas emissions. R. Bras. Zootec. 49, https://doi.org/10.37496/rbz49...
 
9.
Bueno M.S., Ferrari E., Possenti R.A., Bianchini D., Leinz F.F. Rodrigues C.F.D., 2004. Performance of sheep fed sunflower silage or corn silage with increasing proportion of commercial concentrate. R. Bras. Zootec. 33, 1942–1948, https://doi.org/10.1590/S1516-...
 
10.
Dolci P., Tabacco E., Cocolin L., Borreani G., 2011. Microbial dynamics during aerobic exposure of corn silage stored under oxygen barrier or polyethylene films. Appl. Environ. Microbiol. 77, 7499–7507, https://doi.org/10.1128/AEM.05...
 
11.
EFSA (European Food Safety Authority), 2009. Scientific Opinion on the use of natamycin (E 235) as a food additive. EFSA J. 7, 1412, https://doi.org/10.2903/j.efsa...
 
12.
FDA (Food and Drug Administration), 2015. Agency Response Letter GRAS Notice No. GRN 000578
 
13.
Ferraretto L.F., Shaver R.D., Luck B.D., 2018. Silage review: recent advances and future technologies for whole-plant and fractionated corn silage harvesting. J. Dairy Sci. 101, 3937–3951, https://doi.org/10.3168/jds.20...
 
14.
Filya I., Sucu E., 2010. The effects of lactic acid bacteria on the fermentation, aerobic stability and nutritive value of maize silage. Grass Forage Sci. 65, 446–455, https://doi.org/10.1111/j.1365...
 
15.
Filya I., Sucu E., Karabulut A., 2006. The effects of Propionibacterium acidipropionici and Lactobacillus plantarum, applied at ensiling, on the fermentation and aerobic stability of low dry matter corn and sorghum silages. J. Ind. Microbiol. Biotechnol. 33, 353–358, https://doi.org/10.1007/s10295...
 
16.
Jobim C.C., Nussio L.G., Reis R.A., Schmidt P., 2007. Methodological advances in evaluation of preserved forage quality (in Portuguese). Rev. Bras. Zoot. 36, 101–119, https://doi.org/10.1590/S1516-...
 
17.
Junges D., Schmidt P., Novinski C.O., Daniel J.L.P., 2013. Additive containing homo and heterolactic bacteria on the fermentation quality of maize silage. Acta Sci., Anim. Sci. 35, 371–377, https://doi.org/10.4025/actasc...
 
18.
Keady J.W.T., O’Kiely T., 1996. An evolution of effects of rate of the nitrogen fertilization of the grassland on silage fermentation, in silo losses, effluent production and stability. Grass Forage Sci. 51, 350–362, https://doi.org/10.1111/j.1365...
 
19.
Kung L., Savage R.M., da Silva E.B., Polukis S.A., Smith M.L., Johnson A.C.B., Miller M.A., 2021. The effects of air stress during storage and low packing density on the fermentation and aerobic stability of corn silage inoculated with Lactobacillus buchneri 40788. J. Dairy Sci. 104, 4206–4222, https://doi.org/10.3168/jds.20...
 
20.
Levinskas G.J., Ribelin W.E., Shaffer C.B., 1966. Acute and chronic toxicity of pimaricin. Toxicol. Appl. Pharmacol. 8, 97–109, https://doi.org/10.1016/0041-0...
 
21.
Lombardi L., Cabreira Jobim C., Bumbieris Júnior V.H., Júnior M.C., Macedo F.A.F., 2010. Características da carcaça de cordeiros terminados em confinamento recebendo silagem de grãos de milho puro ou com adição de girassol ou ureia (in Portuguese). Acta Sci., Anim. Sci. 32, https://doi.org/10.4025/actasc...
 
22.
Mattia A., Cerniglla C., Baine J., 2002. NATAMYCIN (PIMARICIN) Safety evaluation of certain food additives and contaminants / prepared by the fifty-seventh meeting of the Joint FAO/WHO Expert Committee on Food Additives (‎JECFA)‎. World Health Organization. Geneva (Switzerland), pp. 692
 
23.
Muck R.E., Nadeau E.M.G., McAllister T.A., Contreras-Govea F.E., Santos M.C., Kung L., 2018. Silage review: recent advances and future uses of silage additives. J. Dairy Sci. 101, 3980–4000, https://doi.org/10.3168/jds.20...
 
24.
NRC (National Research Council), 2007. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids. The National Academies Press. Washington, DC (USA), https://doi.org/10.17226/11654
 
25.
Pinto S., Warth J.F.G., Novinski C.O., Schmidt P., 2020. Effects of natamycin and Lactobacillus buchneri on the fermentative process and aerobic stability of maize silage. J. Anim. Feed Sci. 29, 82–89, https://doi.org/10.22358/jafs/...
 
26.
Ranjit N.K., Kung L., 2000. The effect of Lactobacillus buchneri, Lactobacillus plantarum, or a chemical preservative on the fermentation and aerobic stability of corn silage. J. Dairy Sci. 83, 526–535, https://doi.org/10.3168/jds.S0...
 
27.
Ribeiro E.L.A., Rocha M.A., Mizubuti I.Y., Silva L.D.F., 2002. Silages of snflower (Helianthus annus L.), corn (Zea mays L.) and sorghum (Sorghum bicolor (L.) Moench) for ewes in feedlot (in Portuguese). Cienc. Rural. 32, 299–302, https://doi.org/10.1590/S0103-...
 
28.
Ribeiro E.L.A., Rocha M.A., Mizubuti I.Y., Silva L.D.F., Fischer S.R., Silva A.P., 2003. Performance of lambs weaned at 67 days of age and fed corn silage and oat hay. Semina: Ciências Agrárias 24, 85–92, https://doi.org/10.5433/1679-0...
 
29.
Rodrigues P., Pedroso S.G., Melotti L., Andrade S., Lima F., 2002. Comparative studies on chemical composition and fermentation characteristics of corn silage (in Portuguese). Acta Sci., Anim. Sci. 24, 1127–1132, https://doi.org/10.4025/actasc...
 
30.
Shah A.A., Wu J., Qian C., Liu Z., Mobashar M., Tao Z., Zhang X., Zhong X., 2020. Ensiling of whole-plant hybrid pennisetum with natamycin and Lactobacillus plantarum impacts on fermentation characteristics and meta-genomic microbial community at low temperature. J. Sci. Food. Agric. 100, 3378–3385
 
31.
Sousa W.H., Cartaxo F.Q., Cezar M.F., Gonzaga N., Cunha M., Santos N.M., 2008. Performance and carcass traits of lambs finished in feedlot with different body conditions (in Portuguese). Rev. Bras. S. Prod. Ani. 9, 795–803
 
32.
Wiles P.G., Gray I.K., Kissling R.C., 1998. Routine analysis of proteins by Kjeldahl and Dumas methods: review and interlaboratory study using dairy products. J. AOAC Int. 81, 620–632, https://doi.org/10.1093/jaoac/...
 
33.
Woodward K.N., 2013. Toxicological effects of veterinary medical products in humans. The Royal Society of Chemistry. Cambridge (UK)
 
34.
Woolford M.K., Cook J.E., Hall D.M., Bonis A., 1980. The use of pimaricin as an additive to improve the aerobic stability of silage. J. Sci. Food. Agr. 31, 558–566, https://doi.org/10.1002/jsfa.2...
 
35.
Yuan X., Yang X., Wang W., Li J., Dong Z., Zhao J., Shao T., 2022. The effects of natamycin and hexanoic acid on the bacterial community, mycotoxins concentrations, fermentation profiles, and aerobic stability of high moisture whole-crop corn silage. Anim. Feed Sci. Technol. 286, 115250, https://doi.org/10.1016/j.anif...
 
ISSN:1230-1388
Journals System - logo
Scroll to top