ORIGINAL PAPER
Nutritional value, fermentation characteristics and aerobic stability of maize grain silage rehydrated
with increasing levels of wet tomato byproduct
More details
Hide details
1
State University of Montes Claros, Department of Agricultural Science, 39448-581 Janaúba, Brazil
2
Federal University of Minas Gerais, Institute of Agricultural Science, 39404-547 Montes Claros, Brazil
3
Federal University of Vales do Jequitinhonha e Mucuri, Faculty of Biological and Health Sciences, 39100-000 Diamantina, Brazil
Publication date: 2024-10-30
KEYWORDS
TOPICS
ABSTRACT
Rehydrating maize (Zea mays L.) grain silage can mitigate storage
issues in maize production. Moreover, the use of agricultural byproducts for
rehydration may reduce environmental impact and prevent aerobic deterioration
of maize grain silage. This study investigated the effects of increasing levels
of wet tomato byproduct (WTB) on the fermentation characteristics, nutritional
value, and aerobic stability of maize grain silage. A completely randomised design
with five treatments and seven replicates was applied. Treatments consisted
of ground maize grains (1–2 mm) replaced with increasing WTB levels
(25%, 30%, 35%, 40%, and 45%) in the ensiled mass, added based on a fresh
mass basis. A linear decrease (P < 0.01) in dry matter (DM) content from 77.6%
to 53.4% was observed. Crude protein, neutral detergent fibre, and lignin concentrations
increased linearly (P < 0.01), with respective increments of 4.13%,
4.72%, and 1.14% between 25% and 45% WTB additions. A negative quadratic
effect was found in the in vitro digestible DM content (P < 0.01), with the highest
value at 30% WTB (75.6%). Lactic acid concentrations also rose, from 1.01%
to 7.35%, with increasing WTB concentrations. No aerobic deterioration was
observed after 264 h of air exposure in the silages supplemented with 35%,
40%, and 45% WTB. However, excessively high WTB proportions reduced DM
content and increased the concentration of indigestible fibre. Rehydrating maize
grain silage with 35–40% WTB improved fermentation and aerobic stability
without compromising digestibility.
ACKNOWLEDGEMENTS
We express our gratitude to the Minas Gerais Research Foundation (FAPEMIG), Montes Claros State University (UNIMONTES), and the National Council for Scientific and Technological Development (CNPq) for their financial support, scholarships, and provision of resources for this research. We also thank Bestpulp™ (http://www.bestpulp.com.br/) for generously donating wet tomato byproduct used in this study.
FUNDING
This project received partial funding from the Coordination for the Improvement of Higher Education Personnel – Brazil (CAPES) – Financial Code 001.
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
REFERENCES (40)
1.
Alvares C.A., Stape J.L., Sentelhas P.C., de Morales Gonçalves J.L., Sparovek G., 2013. Köppen’s climate classification map for Brazil. Meteorol. Z. 22, 711–728,
https://doi.org/10.1127/0941-2....
2.
Anjos A.N.A., Almeida J.C.C., Viegas C.R., da Silva P.H.F., de Morais L.F., Nepomuceno D.D., de Carvalho C.A.B., Soares F.A., 2022. Protein and carbohydrate profiles of ‘Massai’ grass silage with pelleted citrus pulp and microbial inoculant. Pesq. Agropec. Bras. 57, e02732,
https://doi.org/10.1590/s1678-....
3.
Borreani G., Tabacco E., Schmidt R.J., Holmes B.J., Muck R.A., 2018. Silage review: Factors affecting dry matter and quality losses in silages. J. Dairy Sci. 101,
https://doi.org/10.3168/jds.20....
4.
Coelho M.C., Rodrigues A.S., Teixeira J.A., Pintado M.E., 2023. Integral valorisation of tomato byproducts towards bioactive compounds recovery: Human health benefits. Food Chem. 410, e135319,
https://doi.org/10.1016/j.food....
6.
Cruz F.N.F., Monção F.P., Rocha Júnior V.R., Alencar A.M.S., Rigueira J.P.S., Silva A.F., Miorin R.L., Soares A.C.M., Carvalho C.C.S., Albuquerque C.J.B., 2021. Fermentative losses and chemical composition and in vitro digestibility of corn grain silage rehydrated with water or acid whey combined with bacterial-enzymatic inoculant (in Portuguese). Semina Cienc. Agrar. 42, 3497–3514,
https://doi.org/10.5433/1679-0....
7.
Detmann E., Silva L.F.C., Rocha G.C., Palma M.N.N., Rodrigues J.P.P., 2021. Methods for feed analyses (in Portuguese). 2nd Edition. Suprema. Visconde do Rio Branco (Brazil).
9.
Dubeux Jr. J.C.B., Santos M.V.F., Cunha M.V., Santos D.C., Souza R.T.A., Mello A.C.L.E., Souza T.C., 2021. Cactus (Opuntia and Nopalea) nutritive value: A review. Anim. Feed Sci. Technol. 275, 1–11,
https://doi.org/10.1016/j.anif....
10.
FAO (Food and Agriculture Organization of the United Nations), 2022. Agricultural production statistics 2000–2022. FAOSTAT Analytical Brief-79. Rome (Italy).
12.
Guimarães G.S., Azevedo J.A.G., Cairo F.C., Silva C.S., Souza L.L., Santos N.F., Carvalho G.G.P., Araujo G.G.L., Silva R.R., 2022. Proportions of concentrate and rehydrated ground grain corn silage at different storage times for better use of starch by lambs. Trop. Anim. Health Prod. 54,
https://doi.org/10.1007/s11250....
13.
Halpin C., 2019. Lignin engineering to improve saccharification and digestibility in grasses. Curr. Opin. Biotechnol. 56, 223–229,
https://doi.org/10.1016/j.copb....
15.
Horwitz W., 2005. Official methods of analysis of AOAC International. 18th Edition. 973.18 (lignin), 954.01 (crude protein), 934.01 (dry matter), 920.39 (ether extract), 942.05 (ash). Gaithersburg, MD (USA).
16.
Iommelli P., Zicarelli F., Musco N., Sarubbi F., Grossi M., Lotito D., Lombardi P., Infascelli F., Tudisco R., 2022. Effect of cereals and legumes processing on in situ rumen protein degradability: A review. Fermentation 8, 363,
https://doi.org/10.3390/fermen....
17.
Jamehshooran E.G., Khorshidi K.J., Kouhsar J.B., 2022. Chemical composition, aerobic stability and fermentation pattern of tomato pomace and pumpkin waste silage using fibrolytic enzymes and lactic acid bacteria. Int. J. Recycl. Org. Waste Agric. 11, 47–59,
https://doi.org/10.30486/IJROW....
18.
Jobim C.C., Nussio L.G., Reis R.A., Schmidt P., 2007. Methodological advances in the quality assessment of preserved forage (in Portuguese). Rev. Bras. Zootec. 36, 101–119,
https://doi.org/10.1590/S1516-....
19.
Kung Jr. L., Shaver R.D., Grant R.J., Schmidt R.J., 2018. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 101, 4020–4033,
https://doi.org/10.3168/jds.20....
20.
Lambert R.J., Stratford M., 1999. Weak-acid preservatives: modelling microbial inhibition and response. J. Appl. Microbiol. 86, 157–164,
https://doi.org/10.1046/j.1365....
21.
Lu S., Chen S., Li H. et al., 2022. Sustainable valorization of tomato pomace (Lycopersicon esculentum) in animal nutrition: a review. Animals 12, 3294,
https://doi.org/10.3390/ani122....
22.
Menezes G.L., Oliveira A.F., Lana Â.M.Q. et al., 2022. Effects of different moist orange pulp inclusions in the corn grain rehydration for silage production on chemical composition, fermentation, aerobic stability, microbiological profile, and losses. Anim. Sci. J. 93, e13701,
https://doi.org/10.1111/asj.13....
23.
Moran J.P., Weinberg Z.G., Ashbell G., Hen Y., Owen T.R., 1996. A comparison of two methods for the evaluation of the aerobic stability of whole crop wheat silage. Inter. Silage Conf. 11, 162-163.
24.
Moreno A.D., Duque A., González A., Ballesteros I., Negro M.J., 2021. Valorization of greenhouse horticulture waste from a biorefinery perspective. Foods 10, 814,
https://doi.org/10.3390/foods1....
25.
Muck R.E., Kung Jr. L., Collins M., 2020. Silage production. In: K.J. Moore, M. Collins, C.J. Nelson, D.D. Redfearn (Editors). Forages: The Science of Grassland Agriculture. John Wiley & Sons. Hoboken, NJ (USA), pp. 767–787,
https://doi.org/10.1002/978111....
26.
Muck R.E., Nadeau E.M.G., McAllister T.A., Contreras-Govea F.E., Santos M.C., Kung Jr. L., 2018. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 101,
https://doi.org/10.3168/jds.20....
27.
NRC (National Research Council), 2001. Nutrient Requirements of Dairy Cattle. 7th Revised Edition. National Academies Press. Washington, DC (USA).
28.
Noel R.J., Hambleton L.G., 1976. Collaborative study of a semiautomated method for determination of crude protein in animal feeds. J. AOAC Int. 59, 134–140,
https://doi.org/10.1093/jaoac/....
29.
Pereira M.C.S., Beauchemin K.A., McAllister T.A., Yang W.Z., Wood K.M., Penner G.B., 2023. Effect of physically effective neutral detergent fiber and undigested neutral detergent fiber on eating behavior, ruminal fermentation and motility, barrier function, blood metabolites, and total tract digestibility in finishing cattle. J. Anim. Sci. 101,
https://doi.org/10.1093/jas/sk....
31.
Ribeiro G.O., Gruninger R.J., Jones D.R., Beauchemin K.A., Yang W.Z., Wang Y., Abbot W., Tsang A., McAllister T.A., 2020. Effect of ammonia fiber expansion-treated wheat straw and a recombinant fibrolytic enzyme on rumen microbiota and fermentation parameters, total tract digestibility, and performance of lambs. J. Anim. Sci. 98, skaa116,
https://doi.org/10.1093/jas/sk....
32.
Secondi L., Principato L., Ruini L., Guidi M., 2019. Reusing food waste in food manufacturing companies: The case of the tomato-sauce supply Chain. Sustainability 11, 2154,
https://doi.org/10.3390/su1107....
33.
Silva M.C., Amaral P.N.C., Baggio R.A., Tubin J.S.B., Conte R.A., Pivo J.C.D., Krahl G., Zampar G., Paiano D., 2016. Stability of high moisture corn silage and corn rehydrated. Rev. Bras. Saúde Prod. Anim. 17, 331–343,
https://doi.org/10.1590/S1519-....
34.
Silva E.P., Silva D.A.T., Rabello C.B.V., Lima R.B., Lima M.B., Ludke J.V., 2009. Physicochemical composition and energy values of guava and tomato residues for slow-growing broilers (in Portuguese). Rev. Bras. Zootec. 38, 1051–1058,
https://doi.org/10.1590/S1516-....
35.
Silva P.H.F, Neves R.S., Medeiros G.R, Costa J.H.S., Ribeiro N.L., Carvalho C.B.M., Santos S.G.C.G., 2024. Increasing levels of cornmeal improve chemical and fermentation parameters of maniçoba silage. Ciênc. Anim. Bras. 25, 75861E,
https://doi.org/10.1590/1809-6....
36.
Tres T.T., Jobim C.C., Diaz T.G., Daniel J.L.P., Jacovaci F.A., 2020. Okara or soybean grain added to rehydrated corn grain silage for cattle: digestibility, degradability and ruminal parameters (in Portuguese). Acta Sci. Anim. Sci. 42, e48586,
https://doi.org/10.4025/actasc....
37.
Tuoxunjiang H., Yimamu A., Li X.Q., Maimaiti R., Wang Y.L., 2020. Effect of ensiled tomato pomace on performance and antioxidant status in the peripartum dairy cow. J. Anim. Feed Sci. 29, 105–114,
https://doi.org/10.22358/jafs/....
38.
USDA (United States Department of Agriculture), 2024. World Agricultural Supply and Demand Estimates. World Agricultural Outlook Board. Washington, DC (USA).
39.
Valadares Filho S.C., Lopes S.A., Silva B.C., Chizzotti M.L., Bissaro L.Z., 2018. CQBAL 4.0. Brazilian Feed Composition Tables for Ruminants (in Portuguese). www.cqbal.com.br.
40.
Van Soest P.J., Robertson J.B., Lewis B.A., 1991. Methods for dietary fibre, neutral detergent fibre, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597,
https://doi.org/10.3168/jds.S0....