ORIGINAL PAPER
 
KEYWORDS
TOPICS
ABSTRACT
The aim of this study was to investigate the effects of additives on the nutritional value of fermented vinegar residue. Molasses, urea, and wheat bran were added to the vinegar residue fermentation system as a carbon source, nitrogen source, and a combined source of both carbon and nitrogen, respectively. Molasses was added at the following proportions: 0, 1.5, 3 and 4.5%, urea at 0, 0.5, 1.0 and 1.5%, and wheat bran at 0, 5, 10 and 15%. Fermentation was performed using five strains of fermenting bacteria in laboratory silage bags. After four weeks, the quality of vinegar residue fermentation was evaluated using sensory index, pH value, raw ash, and crude protein contents, as well as levels of ammonia-nitrogen and short-chain fatty acids (including lactic, acetic, propionic, and butyric acids). The results revealed that the addition of 3 and 4.5% molasses significantly improved the pH value, and lactic acid concentration in the vinegar residue (P < 0.05). The addition of 4.5% urea significantly increased the pH value, lactic acid concentration, ash and crude protein contents, while decreasing the acetic acid concentration in the vinegar residue (P < 0.05). The inclusion of 15% wheat bran significantly elevated the sensory index and crude protein content, but reduced the pH value, dry matter content and acetic acid concentration in the vinegar residue (P < 0.05). So, the nutritional quality of vinegar residue can be improved by incorporating carbon and nitrogen sources into the fermentation system. The addition of 15% wheat bran appears to be an optimal choice for stimulating vinegar residue fermentation, surpassing the effectiveness of utilising carbon (molasses) and nitrogen (urea) sources individually.
ACKNOWLEDGEMENTS
The authors gratefully acknowledge the financial support provided by the Jinling Institute of Science and Technology under the programme of scientific research start-up grant for introducing talents (JIT-B-202106), Jiangsu Province College Student Innovation and Entrepreneurship Training Project (202213573101Y) and Jinling Institute of Science and Technology Science and Education Integration Course (202215).
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
 
REFERENCES (33)
1.
Boucher S., Ordway R., Whitehouse N.L., Lundy F., Kononoff P.J., Schwab C.G., 2007. Effect of incremental urea supplementation of a conventional corn silage-based diet on ruminal ammonia concentration and synthesis of microbial protein. J. Dairy Sci. 90, 5619–5633, https://doi.org/10.3168/jds.20....
 
2.
Denek N., Aydin S., Dogan Das B., Avci M., Savrunlu M., 2017. An investigation on the effect of adding different levels of molasses on the silage quality of pistachio (Pistachio vera) by-product and wheat straw mixture silages. Iran. J. Appl. Anim. Sci. 7, 543–548.
 
3.
Du Z., Lin Y., Sun L., Yang F., Cai Y., 2022. Microbial community structure, co‐occurrence network and fermentation characteristics of woody plant silage. J. Sci. Food Agr. 102, 1193–1204, https://doi.org/10.3389/fmicb.....
 
4.
Elmhadi M.E., Ali D.K., Khogali M.K., Wang H., 2022. Subacute ruminal acidosis in dairy herds: Microbiological and nutritional causes, consequences, and prevention strategies. Anim. Nutr. 10, 148–155, https://doi.org/10.1016/j.anin....
 
5.
Firkins J.L., Yu Z., Morrison M., 2007. Ruminal nitrogen metabolism: perspectives for integration of microbiology and nutrition for dairy. J. Dairy Sci. 90 Suppl 1, E1–E16, https://doi.org/10.1007/978-81....
 
6.
Gül S., 2023. The impact of wheat bran and molasses addition to caramba mix silage on feed value and in vitro organic matter digestibility. J. King Saud Univ. Sci. 35, 102400, https://doi.org/10.1016/j.jksu....
 
7.
Gül S., Coskuntuna L., Koç F., Özdüven L., 2019. The effect of wheat bran added to canola silage on feed value and in vitro organic matter digestibility. Appl. Ecol. Env. Res. 17, https://doi.org/10.15666/AEER/....
 
8.
Harris G.K., Marshall M.R., 2017. Ash analysis. In: S. Suzanne Nielsen (Editor). Food analysis. Publisher Springer Cham. Switzerland. pp. 287–297, https://doi.org/10.1007/978-3-....
 
9.
Hou Z., Zheng X., Zhang X., Chen Q., Wu D., 2022. Effects of urea supplementation on the nutritional quality and microbial community of alfalfa (Medicago sativa L.) silage. Arch. Microbiol. 204, 414, https://doi.org/10.1007/s00203....
 
10.
Jiang A.G., 2008. Technology for processing high-quality feed from soy sauce residue and vinegar residue (in Chinese). New. Rural. Technol. 14, 46–51.
 
11.
Jiang F.G., Cheng H.J., Wei C., Zhang Z.K., Su W.Z., Shi G., Song E.L., 2021. Effects of addition amount of molasses on the fermentation quality and microbial diversity of hybrid Broussonetia papyrifera L. vent silage (in Chinese). Biotechnol. Bull. 37, 68–76
 
12.
Kim T.I., Mayakrishnan V., Lim D.H., Yeon J.H., Baek K.S., 2018. Effect of fermented total mixed rations on the growth performance, carcass and meat quality characteristics of Hanwoo steers. Anim. Sci. J. 89, 606–615, https://doi.org/10.1007/s11250....
 
13.
Kordi M., Naserian A.A., 2012. Influence of wheat bran as a silage additive on chemical composition, in situ degradability and in vitro gas production of citrus pulp silage. Afr. J. Biotechnol. 11, 12669–12674, https://doi.org/10.5897/AJB12.....
 
14.
Kung Jr.L., Shaver R., Grant R., Schmidt R., 2018. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 101, 4020–4033, https://doi.org/10.3168/jds.20....
 
15.
Liu J., Li H., Zhu W., Mao S., 2019. Dynamic changes in rumen fermentation and bacterial community following rumen fluid transplantation in a sheep model of rumen acidosis: implications for rumen health in ruminants. FASEB J. 33, 8453–8467, https://doi.org/10.1096/fj.201....
 
16.
Maeda E.M., Zeoula L.M., Jobim C.C., Bertaglia F., Jonker R.C., Geron L.J.V., Henrique D.S., 2011. Chemical composition, fermentation, in vitro digestibility and in situ degradability of sugar cane silages with Lactobacillus, urea and agricultural byproduct. Rev. Bras. Zootecn. 40, 2866–2877, https://doi.org/10.1590/S1516-....
 
17.
Missotten J.A., Michiels J., Degroote J., De Smet S., 2015. Fermented liquid feed for pigs: an ancient technique for the future. J. Anim. Sci. Biotechnol. 6, 4, https://doi.org/10.1186/2049-1....
 
18.
Nascimento R.R.d., Edvan R.L., Nascimento K.d.S., Barros L.d.S., Bezerra L.R., Miranda R.d.S., Perazzo A.F., Araújo M.J.d., 2023. Quality of silage with different mixtures of melon biomass with urea as an additive. Agron. 13, 293, https://doi.org/10.3390/agrono....
 
19.
Nishino N., Li Y., Wang C., Parvin S., 2012. Effects of wilting and molasses addition on fermentation and bacterial community in guinea grass silage. Lett. Appl. Microbiol. 54, 175–181, https://doi.org/10.1111/j.1472....
 
20.
Nussbaum H., Weißbach F., Staudacher W., von Borstel U., Groß F., Seibold R., Rieder J., 2004. Grobfutterbewertung Teil A-DLGSchlüssel zur Bewertung von Grünfutter, Silage und Heu mit Hilfe der Sinnenprüfung. DLG Information.
 
21.
Phesatcha K., Wanapat M., 2016. Improvement of nutritive value and in vitro ruminal fermentation of Leucaena silage by molasses and urea supplementation. Asian-Australas. J. Anim. Sci. 29, 1136, https://doi.org/10.5713/ajas.1....
 
22.
Sáez-Plaza P., Navas M.J., Wybraniec S., Michałowski T., Asuero A.G., 2013. An overview of the Kjeldahl method of nitrogen determination. Part II. Sample preparation, working scale, instrumental finish, and quality control. Crit. Rev. Anal. Chem. 43, 224–272, https://doi.org/10.1080/104083....
 
23.
Santos A.P.M.d., Santos E.M., Oliveira J.S.d., Ribeiro O.L., Perazzo A.F., Martins Araújo Pinho R., Macêdo A.J.d.S., Pereira G.A., 2018. Effects of urea addition on the fermentation of sorghum (Sorghum bicolor) silage. Afr. J. Range For. Sci. 35, 55–62, https://doi.org/10.2989/102201....
 
24.
Shipley B., Vu T.T., 2002. Dry matter content as a measure of dry matter concentration in plants and their parts. New Phytol. 153, 359–364, https://doi.org/10.1046/j.0028....
 
25.
Singh R., Kamra D., Jakhmola R., 1985. Ensiling of leguminous green forages in combination with different dry roughages and molasses. Anim. Feed Sci. Tech. 12, 133–139, https://doi.org/10.1016/0377-8....
 
26.
Song C., Feng J., Wang L., Cai F., Chen C., Liu G., 2021. Comparison of methane production performance of vinegar residue under liquid‐and solid‐state conditions. Environ. Prog. Sustain. 40, e13533, https://doi.org/10.1002/ep.135....
 
27.
Song Z., Dong X., Tong J., Wang Z., 2012. Effects of waste vinegar residue on nutrient digestibility and nitrogen balance in laying hens. Livest. Sci. 150, 67–73, https://doi.org/10.1016/j.livs....
 
28.
Wang K., Yu Y., Liu S., Zhu Y., Liu P., Yu Z., Wang Y., 2022a. A Review of the Current State and Future Prospects in Resource Recovery of Chinese Cereal Vinegar Residue. Foods. 11, https://doi.org/10.3390/foods1....
 
29.
Wang W., Nie Y., Tian H., Quan X., Li J., Shan Q., Li H., Cai Y., Ning S., Santos Bermudez R., 2022b. Microbial Community, Co-Occurrence Network Relationship and Fermentation Lignocellulose Characteristics of Broussonetia papyrifera Ensiled with Wheat Bran. Microorganisms. 10, 2015, https://doi.org/10.3390/microo....
 
30.
Yu Z., Sun Q.Z., Yu Y.D., Wang M.R., 2009. Effects of urea and lactic acid bacteria on the quality of corn stalk silages (in Chinese). Chin. J. Ani. Sci. 45, 37–40.
 
31.
Yunus M., Ohba N., Shimojo M., Furuse M., Masuda Y., 2000. Effects of adding urea and molasses on Napiergrass silage quality. Asian-Austral. J. Anim. 13, 1542–1547, https://doi.org/10.5713/ajas.2....
 
32.
Zhou Y.L., Xu Z.Y., Zhao M.X., Shi W.S., Huang Z.X., He D., Ruan W.Q., 2017. Construction of a high efficiency anaerobic digestion system for vinegar residue (in Chenese). Huan Jing Ke Xue. 38, 4340–4347, https://doi. org/10.13227/j.hjkx.201703104
 
33.
Zhu F., Ran L., Su D., Fan C.Y., Zhang Z.J., Liu Z.Q., Wan X.C., Cheng J.B., 2019. Effect of bran and lactic acid bacteria preparation on silage quality and nutrient content of a tea residue (in Chenese). Pratac. Sci. 36, 234–242, https://doi. org/10.11829/j.issn.1001-0629.2018-0188
 
ISSN:1230-1388
Journals System - logo
Scroll to top