ORIGINAL PAPER
 
KEYWORDS
TOPICS
ABSTRACT
The objective of this study was to evaluate the relationship between body mass index corrected (BMIc) for empty body weight and chemical components in hair sheep lambs. Thirty-eight weaned Pelibuey lambs (21 males and 17 females, with an average weight of 10.64 ± 2.46 kg) were used. The carcass was dissected into muscle and fat and ground together. The viscera and blood were mixed, ground, and one sample was collected from each animal. Crude protein and fat were determined in carcass and viscera samples. Correlation and regression were used to estimate the relationships between body composition and BMI. The correlation between BMIc and carcass crude protein (CCP) and visceral crude protein (VCP) was 0.80 and 0.50, respectively (P < 0.0001). BMIc showed a correlation of 0.71 and 0.70 with carcass fat (CF) and visceral fat (VF), respectively (P < 0.0001). The R2 values ranged from 0.52 to 0.97 for equations involving BMIc and body chemical composition. For carcass chemical components, CCP, CF and CE (carcass energy) with BMIc and R2 ranged from 0.64 (RSD: 0.10 kg) for CCP, 0.53 (RSD: 0.16 kg) for CF to 0.62 (RSD: 7.98) for CE. Visceral composition and BMIc had R2 values ranging from 0.96 for VCP (RSD: 0.05 kg), 0.52 for VF (RSD: 0.09 kg) to 0.55 (RSD: 4.34 kg) for VE (visceral energy). BMIc can be used to moderately predict body chemical composition in weaned Pelibuey lambs.
ACKNOWLEDGEMENTS
The authors want to thank Dr. Jose Manuel Piña Gutiérrez who provided the facilities of Rancho “El Rodeo”. The study was co-funded by the research grant under the Programa de Fomento a la Investigación, as part of the project “Eficiencia energética madre/cría en ovinos de pelo” We also thank CONACYT-MEXICO for granting a scholarship to Salazar-Cuytún E. R. to pursue his doctoral studies at the Universidad Autonoma de Yucatán, Mexico.
CONFLICT OF INTEREST
The Authors declare that there is not conflict of interest.
METADATA IN OTHER LANGUAGES:
Chinese
基于体重指数的毛用羔羊体成分预测
摘要: 本研究的目的是评价毛用羔羊体质指数 (BMI) 与空腹体重 (BMIC) 和化学成分的关系。试验选用断奶佩 利布埃羔羊38只 (公羔21只,母羔17只,平均体重10.64 ± 2.46 kg) 作为研究对象。将每只动物的胴体分离出肌 肉和脂肪并将二者研磨在一起,将内脏和血液混合研磨。测定胴体和内脏样品的粗蛋白质和粗脂肪。采用 相关分析和回归分析评价身体组成与BMI之间的关系。BMIc与胴体粗蛋白 (Carcass crude protein,CCP) 和内脏 粗蛋白 (Visceral crude protein,VCP) 的相关性分别为0.80和0.50 (P < 0.0001)。BMIc与胴体脂肪 (Carcass fat,CF) 和 内脏脂肪 (Visceral fat,VF) 的相关性分别为0.71和0.70 (P < 0.0001)。BMIC与机体化学成分的r2值在0.52 ~ 0.97之 间。胴体化学成分中,BMIC与CCP、CF和CE的r2范围分别为:CCP:0.64 (RSD:0.10 kg)、CF:0.53 (RSD:0.16 kg)、CE:0.62 (RSD:7.98)。内脏成分和BMIc的r2值为VCP:0.96 (RSD:0.05 kg)、VF:0.52 (RSD:0.09 kg) 、VE:0.55 (RSD: 4.34 kg)。结果显示,BMIc可适度预测佩利布埃羔羊断奶羔羊机体化学成分。
 
REFERENCES (30)
1.
Anderson F., Williams A., Pannier L., Pethick D.W., Gardner G.E., 2016. Sire carcass breeding values affect body composition in lambs-2. Effects on fat and bone weight and their distribution within the carscass as measured by computed tomography. Meat. Sci. 116, 243–252, https://doi.org/10.1016/j.meat...
 
2.
AOAC, 1990. Official Methods of Analysis, Association of Official Analytical Chemists. 15th Edition. Arlington, VA (USA)
 
3.
Carrasco S., Ripoll G., Panea B., Álvarez-Rodríguez J., Joy M., 2009. Carcass tissue composition in light lambs: influence of feeding system and prediction equations. Livest. Sci. 126, 112–121, https://doi.org/10.1016/j.livs...
 
4.
Chavarría-Aguilar L.M., García-Herrera R.A., Salazar-Cuytún R., Chay-Canul A.J., Casanova-Lugo F., Piñeiro-Vázquez A.T., Aguilar-Caballero A.J., 2016. Relationship between body fat depots and body mass index in Pelibuey. Small Rumin. Res. 141, 124–126, https://doi.org/10.1016/j.smal...
 
5.
Cochran W.G., Cox G.M., 1957. Experimental Design. 2nd Edition. John Wiley and Sons. New York, NY (USA)
 
6.
Costa M.R.G.F., Pereira E.S., Pinto A.P., Silva A.M.A., Medeiros A.N., Mizubuti I.Y., Ribeiro E.I.A., Campos A.C.N., Gadelha C.R.F., Oliveira R.I., 2014. Prediction of body chemival composition of Morada Nova ram lambs using the composition of ribs section between 9th and 11th. Semin. Cienc. Agrar. 35, 2019–2032, https://doi.org/10.5433/1679-0...
 
7.
Costa Moreira O., Alonso-Aubin D.A., Patrocinio de Oliveira C.E., Candia-Luján R., de Paz J., 2015. Methods of assessment of body composition: an updated review of description, application, advantages and disadvantages (in Spanish). Arch. Med. Deporte. 32, 387–394
 
8.
Costa e Silva L.F., de Campos Valadares Filho S., Del Bianco Benedeti P., Detmann E., Baiao Menezes A.C., Eder Silva T., de Sales Silva F.A., 2019. Development of an equation to predict net protein requirements for the growth of Zebu beef cattle. Animal 14, 963–972, https://doi.org/10.1017/S17517...
 
9.
Fonseca M.A., Tedeschi L.O., Valadares Filho S.C., De Paula N.F., Silva L.D., Sathler D.F.T., 2017. Evaluation of equations to estimate body composition in beef cattle using live, linear and standing-rib cut measurements. Anim. Prod. Sci. 57, 378–390, https://doi.org/10.1071/AN1531...
 
10.
Ehrhardt R.A., Greenwood O.L., Bell A.W., Boisclair Y.R., 2003. Plasma leptin is regulated predominantly by nutrition in preruminant lambs. J. Nutr. 133, 4196–4201, https://doi.org/10.1093/jn/133...
 
11.
Herath H.M.G.P., Pain S.J., Kenyon P.R., Blair H.T., Morel P.C.H., 2020. Effect of dietary protein to energy ratio of milk replacer on growth and body composition of pre-weaned lambs reared artificially. Anim. Feed. Sci. Tech. 264, 114478, https://doi.org/10.1016/j.anif...
 
12.
Khojastehkey M., Aslaminejad A.A., Shariati M.M., Dianat R., 2016. Body size estimation of newborn lambs using image processing and its effect on the genetic gain of a simulated population. Appl. Anim. Behav. Sci. 44, 326–330, https://doi.org/10.1080/097121...
 
13.
Lin K., 1989. A concordance correlation coefficient to evaluate reproducibility. Biometrics 45, 255–268, https://doi.org/10.2307/253205...
 
14.
Loauge K., Green R.E., 1991. Statistical and graphical methods for evaluating solute transport models: overview and application. J. Contam. Hydrol. 7, 51–73, https://doi.org/10.1016/0169-7...
 
15.
Loya-Olguin J.L., Ávila Ramos F., Martínez Gonzalez S., García Galicia I.A., Alarcón Rojo A.D., Escalera Valente F., 2019. DL-malic acid supplementation improves the carcass characteristics of finishing Pelibuey lambs (in Spanish). Rev. Mex. Cienc. Pec. 10, 460–472, https://doi.org/10.22319/rmcp....
 
16.
Luaces M.L., Calvo C., Fernández B., Fernández A., Viana J.L., Sánchez L., 2007. Tissues allometric coefficients in galician breed lamb (in Spanish). Inf. Tec. Econ. Agrar. 103, 72–83, https://citarea.cita-aragon.es...
 
17.
Macedo R., Arredondo V., 2008. Effect of sex, type of birth and lactation on growth of Pelibuey sheep under intensive management (in Spanish). Arch. Zootec. 57, 219–228, http//www. redalyc.org/articulo.oa?id=49515018014
 
18.
Macías-Cruz U., Álvarez-Valenzuela F.D., Rodríguez-García J., CorreaCalderón A., Torrentera-Olivera N.G., Molina-Ramírez L., Avendaño-Reyes L., 2010. Growth and carcass traits in pure Pelibuey lambs and crosses F1 with Dorper and Katahdin breeds in confinement (in Spanish). Arch. Med. Vet. 42, 147–154, https://doi.org/10.4067/S0301-...
 
19.
Maeno H., Oishi K., Hirooka H., 2013. Interspecies differences in the empty body chemical composition of domestic animals. Animal 7, 1148–1157, https://doi.org/10.1017/S17517...
 
20.
Mayer D.G., Butler D.G., 1993. Statistical validation. Ecol. Model. 68, 21–32, https://doi.org/10.1016/0304-3...
 
21.
Morales-Martínez M.A., Arce-Recinos C., Mendoza-Taco M.M., LunaPalomera C., Ramirez-Bautista M.A., Piñeiro Vazquez A.T., Vicente-Perez R., Tedeschi L.O., Chay-Canul A.J., 2020. Developing equations for predicting internal body fat in Pelibuey sheep using ultrasound measurements. Small Rum. Res. 183, https://doi.org/10.1016/j.smal...
 
22.
Moro A.B., Pires C.C., da Silva L.P., Dias A.M.O., Simoes R.R., Pilecco V.M., de Mello R., de Aguilar L.K., 2019. Prediction of lamb body composition using in vivo bioimpedance analysis. Meat Sci. 150, 1–6, https://doi.org/10.1016/j.meat...
 
23.
Pearce K.L., Ferguson M., Gardner G., Smith N., Greef J., Pethink D.W., 2009. Dual X-ray absorptiometry accurately predicts carcass composition from live sheep and chemical composition of live and dead sheep. Meat. Sci. 81, 285–293, https://doi.org/10.1016/j.meat...
 
24.
Ribeiro F.R.B., Tedeschi L.O., 2012. Using real-time ultrasound and carcass measurements to estimate total internal fat in beef cattle over different breed types and managements. J. Anim. Sci. 90, 3259–3265, https://doi.org/10.2527/jas.20...
 
25.
Salazar-Cuytún E.R., Chay-Canul A.J., Ptáček M., GarcíaHerrera R.A., Rivera-Alegría F. de M., Aguilar-Caballero A.J., Sarmiento-Franco L.A., 2020a. Relationship between body mass index and body condition score in Pelibuey ewes. Ecosist. Recur. Agropec. 7, e2474, https://doi.org/10.19136/era.a...
 
26.
Salazar-Cuytún E.R., Sarmiento-Franco L.A., Aguilar-Caballero A.J., Fonseca M.A., Tedeschi L.O., 2020b. Body mass index and body chemical components in Pelibuey ewes. Ecosist. Recur. Agropec. 7, e2515, https://doi.org/10.19136/era.a... SAS, 2002. SAS Statistical Software, version 9.00. SAS Institute Inc., Cary, NC (USA).
 
27.
Tedeschi L.O., 2006. Assessment of the adequacy of mathematical models. Agric. Sys. 89, 225–247, https://doi.org/10.1016/j.agsy...
 
28.
Wells J.C.K., 2001. A critique of the expression of paediatric body composition data. Arch. Dis. Child. 85, 67–72, http://doi.org/10.1136/adc.85....
 
29.
ARC (Agricultural Research Council), 1980. The Nutrient Requirements of Ruminant Livestock. The Gresham Press. London (UK)
 
30.
SAS, 2002. SAS Statistical Software, version 9.00. SAS Institute Inc., Cary, NC (USA)
 
ISSN:1230-1388
Journals System - logo
Scroll to top