ORIGINAL PAPER
Relationships between microbial community, functional profile
and fermentation quality during ensiling of hybrid Pennisetum
More details
Hide details
1
Nanjing Agricultural University, College of Agro-grassland Science, Institute of Ensiling and Processing of Grass,
210095 Nanjing, China
Publication date: 2023-06-15
Corresponding author
T. Shao
Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University
J. Anim. Feed Sci. 2023;32(4):447-458
KEYWORDS
TOPICS
ABSTRACT
With the increasing shortage of feed resources, hybrid Pennisetum
(HE) shows promise as a potential animal feedstuff. The present study aimed
to evaluate the fermentation quality, microbial community and functional shifts
in HE during ensiling. HE was ensiled naturally (NHE) for 1, 3, 7, 15, 30 and
60 days. After 60 days of ensiling, NHE presented acetate-type fermentation
with a high pH value (5.02), as well as acetic acid, butyric acid (0.33% DM),
ethanol and ammonia nitrogen (14.0% TN) concentrations, while low lactic
acid levels. Enterobacter (45.57%), Klebsiella (12.95%) and Lactococcus
(10.24%) were dominant in the 3-day NHE, while Enterobacter (26.27%),
Clostridium sensu stricto 11 (21.15%) and Lactobacillus (18.51%) were the
most abundant genera in the 60-day NHE. Spearman’s correlation heatmap
revealed a positive relationship between Clostridium sensu stricto 1 and
ammonia nitrogen, ethanol and butyric acid concentrations. Our analysis
of functional profiles obtained from the Kyoto Encyclopedia of Genes and
Genomes (KEGG) showed significant differences between fresh and ensiled
HE. The ensiling process suppressed amino acid, cofactors, vitamins and
energy metabolism, but promoted metabolism associated with carbohydrates
and nucleotides. The results of next-generation sequencing in combination
with KEGG functional predictions revealed distinct differences in the initial and
late phases of ensiling both in terms of community succession and functional
shifts. Additional management measures such as delayed harvest or lactic
acid bacteria inoculation are necessary to reduce nutrient loss and improve the
fermentation quality of NHE.
FUNDING
This work was financially supported by the
NSFC (Grant No. 32201464), Jiangsu Funding
Program for Excellent Postdoctoral Talent (Grant
No. 2022ZB319) and United Fund for Regional
Inno & Dev of NSFC (Grant No. U20A2003).
CONFLICT OF INTEREST
The Authors declare that there is no conflict of
interest.
REFERENCES (39)
1.
Agarussi M.C.N., Pereira O.G., da Silva V.P., Leandro E.S., Ribeiro K.G., Santos S.A., 2019. Fermentative profile and lactic acid bacterial dynamics in non-wilted and wilted alfalfa silage in tropical conditions. Mol. Biol. Rep. 46, 451–460,
https://doi.org/10.1007/s11033...
2.
Asshauer K.P., Wemheuer B., Daniel R., Meinicke P., 2015. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31, 2882–2884,
https://doi.org/10.1093/bioinf...
3.
Bai J., Ding Z., Ke W., Xu D., Wang M., Huang W., Zhang Y., Liu F., Guo X., 2021. Different lactic acid bacteria and their combinations regulated the fermentation process of ensiled alfalfa: ensiling characteristics, dynamics of bacterial community and their functional shifts. Microb. Biotechnol. 14, 1171–1182,
https://doi.org/10.1111/1751-7...
4.
Brenner D.J., Krieg R., Staley J.R., 2005. Bergey’s Manual of Systematic Bacteriology. Springer. New York City, NY (USA)
5.
Broderick G.A., Kang J.H., 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 63, 64–75,
https://doi.org/10.3168/jds.S0...
6.
Cai C., Wang L., Wang G., Hao J., Bai X., Wang Z., Wang D., 2020. Effects of dry explosion pretreatment on physicochemical and fuel properties of hybrid pennisetum (Pennisetum americanum × P. purpureum). Bioresour. Technol. 297, 122508,
https://doi.org/10.1016/j.bior...
7.
Dong Z., Shao T., Li J., Yang L., Yuan X., 2020. Effect of alfalfa microbiota on fermentation quality and bacterial community succession in fresh or sterile Napier grass silages. J. Dairy Sci. 103, 4288–4301,
https://doi.org/10.3168/jds.20...
8.
Doyle C.J., Gleeson D., Jordan K., Beresford T.P., Ross R.P., Fitzgerald G.F., Cotter P.D., 2015. Anaerobic sporeformers and their significance with respect to milk and dairy products. Int. J. Food Microbiol. 197, 77–87,
https://doi.org/10.1016/j.ijfo...
9.
Esen S., Cabi E., Koç F., 2022. Effect of freeze-dried kefir culture inoculation on nutritional quality, in vitro digestibility, mineral concentrations, and fatty acid composition of white clover silages. Biomass Convers Biorefinery,
https://doi.org/10.1007/s13399...
10.
Flythe M.D., Russell J.B., 2004. The effect of pH and a bacteriocin (bovicin HC5) on Clostridium sporogenes MD1, a bacterium that has the ability to degrade amino acids in ensiled plant materials. FEMS Microbiol. Ecol. 47, 215–222,
https://doi.org/10.1016/s0168-...
11.
Graf K., Ulrich A., Idler C., Klocke M., 2016. Bacterial community dynamics during ensiling of perennial ryegrass at two compaction levels monitored by terminal restriction fragment length polymorphism. J. Appl. Microbiol. 120, 1479–1491,
https://doi.org/10.1111/jam.13...
12.
He L., Wang C., Xing Y., Zhou W., Pian R., Chen X., Zhang Q., 2020. Ensiling characteristics, proteolysis and bacterial community of high-moisture corn stalk and stylo silage prepared with Bauhinia variegate flower. Bioresour. Technol. 296, 122336,
https://doi.org/10.1016/j.bior...
14.
Keshri J., Chen Y., Pinto R., Kroupitski Y., Weinberg Z.G., Sela Saldinger S., 2019. Bacterial dynamics of wheat silage. Front. Microbiol. 10, 1532,
https://doi.org/10.3389/fmicb....
15.
Kilstrup M., Hammer K., Ruhdal Jensen P., Martinussen J., 2005. Nucleotide metabolism and its control in lactic acid bacteria. FEMS Microbiol. Rev. 29, 555–590,
https://doi.org/10.1016/j.fems...
16.
Kung L., Shaver R.D., Grant R.J., Schmidt R.J., 2018. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 101, 4020–4033,
https://doi.org/10.3168/jds.20...
17.
Liu Q.H., Wu J.X., Shao T., 2019. Roles of microbes and lipolytic enzymes in changing the fatty acid profile, α-tocopherol and β-carotene of whole-crop oat silages during ensiling and after exposure to air. Anim. Feed Sci. Technol. 253, 81–92,
https://doi.org/10.1016/j.anif...
18.
McAllister T.A., Duniere L., Drouin P., Xu S., Wang Y., Munns K., Zaheer R., 2018. Silage review: Using molecular approaches to define the microbial ecology of silage. J. Dairy Sci. 101, 4060–4074,
https://doi.org/10.3168/jds.20...
19.
McDonald P., Henderson A.R., Heron S.J.E., 1991. The Biochemistry of Silage. 2nd Edition. Chalcombe Publications. Marlow (UK)
20.
Mendez-Garcia C., Pelaez A.I., Mesa V., Sanchez J., Golyshina O.V., Ferrer M., 2015. Microbial diversity and metabolic networks in acid mine drainage habitats. Front. Microbiol. 6, 475,
https://doi.org/10.3389/fmicb....
22.
Ogunade I.M., Jiang Y., Pech Cervantes A.A., Kim D.H., Oliveira A.S., Vyas D., Weinberg Z.G., Jeong K.C., Adesogan A.T., 2018. Bacterial diversity and composition of alfalfa silage as analyzed by Illumina MiSeq sequencing: Effects of Escherichia coli O157:H7 and silage additives. J. Dairy Sci. 101, 2048–2059,
https://doi.org/10.3168/jds.20...
23.
Oliveira S.S., Costa K.A.d.P., Souza WF.d., Santos C.B.d., Teixeira D.A.A., Silva V.C.e., 2020. Production and quality of the silage of sorghum intercropped with Paiaguas palisadegrass in different forage systems and at different maturity stages. Anim. Prod. Sci. 60, 694–704,
https://doi.org/10.1071/an1708...
24.
Pedroso A.F., Adesogan A.T., Queiroz O.C., Williams S.K., 2010. Control of Escherichia coli O157:H7 in corn silage with or without various inoculants: efficacy and mode of action. J. Dairy Sci. 93, 1098–1104,
https://doi.org/10.3168/jds.20...
25.
Pessione A., Lamberti C., Pessione E., 2010. Proteomics as a tool for studying energy metabolism in lactic acid bacteria. Mol. Biosyst. 6, 1419–1430,
https://doi.org/10.1039/c00194...
27.
Thomas T.A., 1977. An automated procedure for the determination of soluble carbohydrates in herbage. J. Sci. Food Agric. 28, 639–642,
https://doi.org/10.1002/jsfa.2...
28.
Tian H., Zhu Y., Dai M., Li T., Guo Y., Deng M., Sun B., 2022. Additives altered bacterial communities and metabolic profiles in silage hybrid Pennisetum. Front. Microbiol. 12, 770728,
https://doi.org/10.3389/fmicb....
29.
van Niekerk W.A., Hassen A., Bechaz F.M., 2010. Influence of growth stage at harvest on fermentative characteristics of Panicum maximum silage. S. Afr. J. Anim. Sci. 40, 334–341
30.
Wang C., Zheng M., Wu S., Zou X., Chen X., Ge L., Zhang Q., 2021. Effects of gallic acid on fermentation parameters, protein fraction, and bacterial community of whole plant soybean silage. Front. Microbiol. 12, 662966,
https://doi.org/10.3389/fmicb....
31.
Xu D., Wang N., Rinne M., Ke W., Weinberg Z.G., Da M., Bai J., Zhang Y., Li F., Guo X., 2021. The bacterial community and metabolome dynamics and their interactions modulate fermentation process of whole crop corn silage prepared with or without inoculants. Microb. Biotechnol. 14, 561–576,
https://doi.org/10.1111/1751-7...
32.
Zadoks R.N., Griffiths H.M., Munoz M.A., Ahlstrom C., Bennett G.J., Thomas E., Schukken Y.H., 2011. Sources of Klebsiella and Raoultella species on dairy farms: be careful where you walk. J. Dairy Sci. 94, 1045–1051,
https://doi.org/10.3168/jds.20...
33.
Zhang Q., Zou X., Wu S., Wu N., Chen X., Zhou W., 2022. Effects of pyroligneous acid on diversity and dynamics of antibiotic resistance genes in alfalfa silage. Microbiol. Spectr. 10, e0155422,
https://doi.org/10.1128/spectr...
34.
Zhang Y., Li L., Kang X., Sun Y., Yuan Z., Xing T., Lin R., 2019. Improving methane production from Pennisetum hybrid by monitoring plant height and ensiling pretreatment. Renew. Energy 141, 57–63,
https://doi.org/10.1016/j.rene...
35.
Zhang Y., Liu Y., Meng Q., Zhou Z., Wu H., 2020. A mixture of potassium sorbate and sodium benzoate improved fermentation quality of whole-plant corn silage by shifting bacterial communities. J. Appl. Microbiol. 128, 1312–1323,
https://doi.org/10.1111/jam.14...
36.
Zhao J., Dong Z., Li J., Chen L., Bai Y., Jia Y., Shao T., 2018. Ensiling as pretreatment of rice straw: The effect of hemicellulase and Lactobacillus plantarum on hemicellulose degradation and cellulose conversion. Bioresour. Technol. 266, 158–165,
https://doi.org/10.1016/j.bior...
37.
Zhao J., Yin X., Dong Z., Wang S., Li J., Dong D., Shao T., 2022. Using γ-ray irradiation and epiphytic microbiota inoculation to separate the effects of chemical and microbial factors on fermentation quality and bacterial community of ensiled Pennisetum giganteum. J. Appl. Microbiol. 132, 1675–1686,
https://doi.org/10.1111/jam.15...
38.
Zhao X., Liu J., Liu J., Yang F., Zhu W., Yuan X., Hu Y., Cui Z., Wang X., 2017. Effect of ensiling and silage additives on biogas production and microbial community dynamics during anaerobic digestion of switchgrass. Bioresour. Technol. 241, 349–359,
https://doi.org/10.1016/j.bior...
39.
Zheng Z., Gorden P.J., Xia X., Zheng Y., Li G., 2022. Whole-genome analysis of Klebsiella pneumoniae from bovine mastitis milk in the U.S. Environ. Microbiol. 24, 1183–1199,
https://doi.org/10.1111/1462-2...
CITATIONS (2):
1.
Core microbiota for nutrient digestion remained and ammonia utilization increased after continuous batch culture of rumen microbiota in vitro
Mengyu Liu, Tong Wang, Lu Wang, Hanjie Xiao, Jinhui Li, Chunhui Duan, Lijie Gao, Yueqin Liu, Hui Yan, Yingjie Zhang, Shoukun Ji
Frontiers in Microbiology
2.
Effects of lactic acid bacteria inoculants on the nutrient composition, fermentation quality, and microbial diversity of whole-plant soybean-corn mixed silage
Junzhao Xu, Jianfei Ma, Rula Sa, Humujile Sui, Xiaoni Wang, Qi Li, Xinyue Zhu, Baiyila Wu, Zongfu Hu, Huaxin Niu
Frontiers in Microbiology