ORIGINAL PAPER
Rumen fermentation of lignocellulosic biomass from wheat straw and date leaf inoculated with bacteria isolated from termite gut
,
 
,
 
,
 
,
 
 
 
More details
Hide details
1
Lorestan University, School of Agriculture, Animal Science Group, P.O. Box 465, Khoramabad, Iran
 
2
REQUIMTE, LAQV, ICBAS, Institute of Biomedical Sciences of Abel Salazar, University of Porto, Jorge Viterbo Ferreira Street 228, 4050-313 Porto, Portugal
 
3
Animal Science Research Institute, P.O. Box 1483-31585, Karaj, Iran
 
 
Publication date: 2018-08-30
 
 
Corresponding author
A. R.J. Cabrita   

REQUIMTE, LAQV, ICBAS, Institute of Biomedical Sciences of Abel Salazar, University of Porto, Jorge Viterbo Ferreira Street 228, 4050-313 Porto, Portugal
 
 
J. Anim. Feed Sci. 2018;27(3):211-218
 
KEYWORDS
TOPICS
ABSTRACT
This experiment evaluated the effects of the inoculation of lignocellulosic biomass from wheat straw (LBWS) and date (Phoenix dactylifera L.) leaf (LBDL) with bacteria (Bacillus licheniformis, Ochrobactrum intermedium and Microbacterium paludicola) with lignocellulose-degrading potential isolated from termite gut on the nutritive value of these substrates. Inoculation with B. licheniformis and M. paludicola had a significant effect on chemical composition (organic matter, crude protein and neutral detergent fibre (NDF) contents) of LBWS whereas for LBDL bacterial treatments only tended to affect protein and NDF contents. LBWS inoculated with B. licheniformis and M. paludicola promoted a lower in vitro gas production from soluble fractions, while all bacterial treatments lowered gas production from insoluble but fermentable fractions of LBDL. Bacterial treatments differently affected the nutritive value of LBWS and LBDL – the effects were more marked for LBWS and with the inoculation with B. licheniformis and M. paludicola. None of the bacteria degraded lignin after three weeks of inoculation. More research is needed to evaluate longer bacterial treatments and different bacterial strains.
 
REFERENCES (34)
1.
AOAC International, 1995. Official Methods of Analysis of AOAC International. 16th Edition. Arlington, VA (USA).
 
2.
Azizi-Shotorkhoft A., Mohammadabadi T., Motamedi H., Chaji M., Fazaeli H., 2016. Isolation and identification of termite gut symbiotic bacteria with lignocellulose-degrading potential, and their effects on the nutritive value for ruminants of some by-products. Anim. Feed Sci. Technol. 221, 234–242, https://doi.org/10.1016/j.anif....
 
3.
Basu S., Gaur R., Gomes J., Sreekrishnan T.R., Bisaria V.S., 2002. Effect of seed culture on solid-state bioconversion of wheat straw by Phanerochaete chrysosporium for animal feed production. J. Biosci. Bioeng. 93, 25–30, https://doi.org/10.1016/S1389-....
 
4.
Borji M., 2003. The survey possibility of straw polysaccharides and lignin degradation by isolated microbiota from termites. PhD Thesis. Tarbiat Modares University, Tehran (Iran).
 
5.
Bugg T.D.H., Ahmad M., Hardiman E.M., Singh R., 2011. The emerging role for bacteria in lignin degradation and bio-product formation. Curr. Opin. Biotechnol. 22, 394–400, https://doi.org/10.1016/j.copb....
 
6.
Butler J.H., Buckerfield J.C., 1979. Digestion of lignin by termites. Soil Biol. Biochem. 11, 507–511, https://doi.org/10.1016/0038-0....
 
7.
Cartwright N.J., Holdom K.S., 1973. Enzymatic lignin, its release and utilization by bacteria. Microbios 8, 7–14.
 
8.
Chao C.T., Krueger R.R., 2007. The date palm (Phoenix dactylifera L.): overview of biology, uses, and cultivation. HortScience 42, 1077–1082.
 
9.
Chung S.-Y., Maeda M., Song E., Horikoshij K., Kudo T., 1994. A Grampositive polychlorinated biphenyl-degrading bacterium, Rhodococcus erythropolis strain TA421, isolated from a termite ecosystem. Biosci. Biotechnol. Biochem. 58, 2111–2113, https://doi.org/10.1271/bbb.58....
 
10.
Crawford D.L., 1978. Lignocellulose decomposition by selected streptomyces strains. Appl. Environ. Microbiol. 35, 1041–1045.
 
11.
Crawford D.L., Pometto A.L., Crawford R.L., 1983. Lignin degradation by Streptomyces viridosporus: Isolation and characterization of a new polymeric lignin degradation intermediate. Appl. Environ. Microbiol. 45, 898–904.
 
12.
Culliney T.W., Grace J.K., 2000. Prospects for the biological control of subterranean termites (Isoptera: Rhinotermitidae), with special reference to Coptotermes formosanus. Bull. Entomol. Res. 90, 9–21, https://doi.org/10.1017/S00074....
 
13.
Fahy P.C., Persley G.J., 1983. Plant Bacterial Diseases: A Diagnostic Guide. Academic Press. Sydney (Australia).
 
14.
Ghasemi E., Khorvash M., Ghorbani G.R., Emami M.R., Karimi K., 2013. Dry chemical processing and ensiling of rice straw to improve its quality for use as ruminant feed. Trop. Anim. Health Prod. 45, 1215–1221, https://doi.org/10.1007/s11250....
 
15.
Harazono K., Yamashita N., Shinzato N., Watanabe Y., Fukatsu T., Kurane R., 2003. Isolation and characterization of aromatic degrading microorganisms from the gut of the lower termite Coptotermes formosanus. Biosci. Biotechnol. Biochem. 67, 889–892, https://doi.org/10.1271/bbb.67....
 
16.
Hyodo F., Azuma J.-i., Abe T., 1999. Estimation of effect of passage through the gut of a lower termite Coptotermes formosanus Shiraki, on lignin by solid-state CP/MASS 13C NMR. Holzforschung 53, 244–246, https://doi.org/10.1515/HF.199....
 
17.
Kato K., Kozaki S., Sakurananga M., 1998. Degradation of lignin compounds by bacteria from termite guts. Biotechnol. Lett. 20, 459–462, https://doi.org/10.1023/A:1005....
 
18.
Kerr T.J., Kerr R.D., 1987. Microorganism having characteristics of an Arthrobacter capable of degrading peanut hull lignin. United State Patent No. 4643899 (USA).
 
19.
Kuhar S., Nair L.M., Kuhad R.C., 2008. Pretreatment of lignocellulosic material with fungi capable of higher lignin degradation and lower carbohydrate degradation improves substrate acid hydrolysis and the eventual conversion to ethanol. Can. J. Microbiol. 54, 305–313, https://doi.org/10.1139/W08-00....
 
20.
Maia M.R.G., Fonseca A.J.M., Oliveira H.M., Mendonça C., Cabrita A.R.J., 2016. The potential role of seaweeds in the natural manipulation of rumen fermentation and methane production. Sci. Rep. 6, 32321, https://doi.org/10.1038/srep32....
 
21.
Marten G.C., Barnes R.F., 1980. Prediction of energy digestibility of forages with in vitro rumen fermentation and fungal enzyme systems. In: W.J. Pigden, C.C. Balch, M. Graham (Editors). Standardization of Analytical Methodology for Feeds. International Development Research Centre. Ottawa (Canada), pp. 61–71.
 
22.
McSweeney C.S., Palmer B., Bunch R., Krause D.O., 2001. Effect of tropical forage calliandra on microbial protein synthesis and ecology in the rumen. J. Appl. Microbiol. 90, 78–88, https://doi.org/10.1046/j.1365....
 
23.
Neifar M., Jaouani A., Ayari A., Abid O., Salem H.B., Boudabous A., Najar T., Ghorbel R.E., 2013. Improving the nutritive value of Olive Cake by solid state cultivation of the medicinal mushroom Fomes fomentarius. Chemosphere 91, 110–114, https://doi.org/10.1016/j.chem....
 
24.
Okano K., Ohkoshi N., Nishiyama A., Usagawa T., Kitagawa M., 2009. Improving the nutritive value of madake bamboo, Phyllostachys bambusoides, for ruminants by culturing with the white-rot fungus Ceriporiopsis subvermispora. Anim. Feed Sci. Technol. 152, 278–285. https://doi.org/10.1016/j.anif....
 
25.
Ørskov E.R., McDonald I., 1979. The estimation of protein degradability in the rumen from incubation measurements weighed according to rate of passage. J. Agric. Sci. 92, 499–503, https://doi.org/10.1017/S00218....
 
26.
Robertson J.B., Van Soest P.J., 1981. The detergent system of analysis and its application to human foods. In: W.P.T. James, O. Theander (Editors). The Analysis of Dietary Fibre in Food. Marcel Dekker. New York, NY (USA), pp. 123–158.
 
27.
Salman F.M., El-Kadi R.I., Abdel-Rahman H., Ahmed S.M., Mohamed M.I., Shoukry M.M., 2008. Biologically treated sugar beet pulp as a supplement in goat rations. Int. J. Agric. Biol. 10, 412–416.
 
28.
Shrivastava B., Jain K.K., Kalra A., Kuhad R.C., 2014. Bioprocessing of wheat straw into nutritionally rich and digested cattle feed. Sci. Rep. 4, 6360, https://doi.org/10.1038/srep06....
 
29.
Shrivastava B., Nandal P., Sharma A., Jain K.K., Khasa Y.P., Das T.K., Mani V., Kewalramani N.J., Kundu S.S., Kuhad R.C., 2012. Solid state bioconversion of wheat straw into digestible and nutritive ruminant feed by Ganoderma sp rckk02. Bioresour. Technol. 107, 347–351, https://doi.org/10.1016/j.bior....
 
30.
 
31.
Siu R.G.H., 1951. Microbial Decomposition of Cellulose. Reinhold Publishing Corp. New York, NY (USA).
 
32.
Theodorou M.K., Williams B.A., Dhanoa M.S., McAllan A.B., France J., 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 48, 185–197, https://doi.org/10.1016/0377-8....
 
33.
Van Soest P.J., Robertson J.B., Lewis B.A., 1991. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597, https://doi.org/10.3168/jds.S0....
 
34.
Watanabe H., Tokuda G., 2010. Cellulolytic systems in insects. Annu. Rev. Entomol. 55, 609–632, https://doi.org/10.1146/annure....
 
 
CITATIONS (2):
1.
Degradation profile of nixtamalized maize pericarp by the action of the microbial consortium PM-06
José Serrano-Gamboa, Rafael Rojas-Herrera, Araceli González-Burgos, Jorge Folch-Mallol, Diego Jiménez, Mónica Sánchez-González
AMB Express
 
2.
Exploring the effect of plant substrates on bacterial community structure in termite fungus-combs
Shiyou Liang, Chengpan Wang, Farhan Ahmad, Xuejie Yin, Yin Hu, Jianchu Mo, Kandasamy Ulaganathan
PLOS ONE
 
ISSN:1230-1388
Journals System - logo
Scroll to top