REVIEW PAPER
Selected physiological effects of boron compounds for animals and humans. A review
,
 
,
 
 
 
More details
Hide details
1
The Kielanowski Institue of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
 
2
Warsaw University of Life Sciences, Faculty of Human Nutrition and Consumer Sciences, Nowoursynowska 159c, 02-776 Warszawa, Poland
 
 
Publication date: 2019-12-27
 
 
Corresponding author
M. Czauderna   

The Kielanowski Institue of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
 
 
J. Anim. Feed Sci. 2019;28(4):307-320
 
KEYWORDS
TOPICS
ABSTRACT
Boron is a metalloid that plays an important role in the functioning of cell membrane, enzymatic reactions and the hormonal and mineral metabolism of animals. Boron is also thought to be an essential metalloid for animals. Boron compounds have a wide range of physiological effects in living organisms when occurring at low levels, while toxic at high levels. Boron does not accumulate efficiently in soft tissues; but it accumulates efficiently in the bones. More than 90% of the excessive amount of borate in mammals is excreted as boric acid in the urine. Boron has an impact on skeletal metabolism, thus it affects bone growth and compositional properties of soft tissues in animals and humans. Boron-rich diets have a beneficial impact on the calcification and maintenance of mammalian bones, central nervous system functions, and also play a positive role in maintaining the structural integrity and function of cell membranes. Borate in the perinatal diet of cattle improves animal metabolic status stimulating glucose metabolism and limiting lipolysis intensity. The main purpose of the present review was to recapitulate the most important findings regarding the biochemical mechanisms responsible for beneficial physiological effects of boron in animals and humans.
 
REFERENCES (91)
1.
Abdelnour S.A., Abd El-Hack M.E., Swelum A.A., Perillo A., Losacco C., 2018. The vital roles of boron in animal health and production: A comprehensive review. J. Trace Elem. Med. Biol. 50, 296–304, https://doi.org/10.1016/j.jtem...
 
2.
Armstrong T.A., Flowers W.L., Spears J.W., Nielsen F.H., 2002. Long-term effects of boron supplementation on reproductive characteristics and bone mechanical properties in gilts. J. Anim. Sci. 80, 154–161, https://doi.org/10.2527/2002.8...
 
3.
Armstrong T.A., Spears J.W., 2001. Effect of dietary boron on growth performance, calcium, and phosphorus metabolism, and bone mechanical properties in growing barrows. J. Anim. Sci. 79, 3120–3127, https://doi.org/10.2527/2001.7....
 
4.
Armstrong T.A., Spears J.W., Crenshaw T.D., Nielsen F.H., 2000. Boron supplementation of a semipurified diet for weanling pigs improves feed efficiency and bone strength characteristics and alters plasma lipid metabolites. J. Nutr. 130, 2575–2581, https://doi.org/10.1093/jn/130....
 
5.
Bai Y., Hunt C.D., Newman S.M., 1997. Dietary boron increases serum antibody (IgG and IgM) concentrations in rats immunized with human typhoid vaccine. Proc. North Dakota Acad. Sci. 51, p. 181.
 
6.
Baker S.J., Tomsho J.W., Benkovic S.J., 2011. Boron-containing inhibitors of synthetases. Chem. Soc. Rev. 40, 4279–4285, https://doi.org/10.1039/c0cs00....
 
7.
Bakke J.P., 1991. Evaluation of the potential of boric acid to induce unscheduled DNA synthesis in the in vitro hepatocyte DNA repair assay using the male F-344 rat. Submitted by U.S. Borax Corp; MRID No. 42038903.
 
8.
Barranco W.T., Eckhert C.D., 2006. Cellular changes in boric acid treated DU-145 prostate cancer cells. Br. J. Cancer 94, 884–890, https://doi.org/10.1038/sj.bjc...
 
9.
Basoglu A., Baspinar N., Sagkan Ozturk A., Peker Akalin P., 2010. Effects of boron administration on hepatic steatosis, hematological and biochemical profiles in obese rabbits. Trace Elem. Electrolytes 27, 225–231, https://doi.org/10.5414/TEP272....
 
10.
Basoglu A., Sevinç M., Birdane F.M., Boydak M., 2002. Efficacy of sodium borate in the prevention of fatty liver in dairy cows. J. Vet. Intern. Med. 16, 732–735, https://doi.org/10.1111/j.1939....
 
11.
Białek M., Czauderna M., Białek A., 2017. Conjugated linolenic acid (CLnA) isomers as new bioactive lipid compounds in ruminant-derived food products. A review. J. Anim. Feed Sci. 26, 3–17, https://doi.org/10.22358/jafs/....
 
12.
Blevins D.G., Lukaszewski K.M., 1998. Boron in plant structure and function. Annu. Rev. Plant Physiol. Plant Molec. Biol. 49, 481–500, https://doi.org/10.1146/annure....
 
13.
Bolaños L., Lukaszewski K., Bonilla I., Blevins D., 2004. Why boron? Plant Physiol. Biochem. 42, 907–912, https://doi.org/10.1016/j.plap....
 
14.
Boyacioglu S.O., Korkmaz M., Kahraman E., Yildirim H., Bora S., Ataman O.Y., 2017. Biological effects of tolerable level chronic boron intake on transcription factors. J. Trace Elem. Med. Biol. 39, 30–35, https://doi.org/10.1016/j.jtem....
 
15.
Bozkurt M., Küçükyilmaz K., 2015. An evaluation on the potential role of boron in poultry nutrition. Part I: Production performance. Worlds Poult. Sci. J. 71, 327–338, https://doi.org/10.1017/S00439....
 
16.
Brown T.F., McCormick M.E., Morris D.R., Zeringue L.K., 1989. Effects of dietary boron on mineral balance in sheep. Nutr. Res. 9, 503–512, https://doi.org/10.1016/S0271-....
 
17.
Celikezen F.C., Turkez H., Aydin E., Izgi M.S., Celikezen B., 2015. Potent antioxidant and genotoxic effects of ammonium tetra borate in vitro. Nat. Sci. Discov. 1, 45–49, https://doi.org/10.20863/nsd.0....
 
18.
Czauderna M., Białek M., Krajewska K.A., Ruszczyńska A., Bulska E., 2017. Selenium supplementation into diets containing carnosic acid, fish and rapeseed oils affects the chemical profile of whole blood in lambs. J. Anim. Feed Sci. 26, 192–203, https://doi.org/10.22358/jafs/....
 
19.
Davidson M.G., Wade K., Marder T.B., Hughes A.K. (Editors), 2000. Contemporary Boron Chemistry. Royal Society of Chemistry. London (UK), pp. 538, https://doi.org/10.1039/978184....
 
20.
Dessordi R., Spirlandeli A.L., Zamarioli A., Volpon J.B., Navarro A.M., 2017. Boron supplementation improves bone health of non-obese diabetic mice. J. Trace Elem. Med. Biol. 39, 169–175, https://doi.org/10.1016/j.jtem....
 
21.
Devirian T.A., Volpe S.L., 2003. The physiological effects of dietary boron. Crit. Rev. Food Sci. Nutr. 43, 219–231, https://doi.org/10.1080/104086....
 
22.
Doğan A., Demirci S., Apdik H., Bayrak O.F., Gulluoglu S., Tuysuz E.C., Gusev O., Rizvanov A.A., Nikerel E., Şahin F., 2017. A new hope for obesity management: Boron inhibits adipogenesis in progenitor cells through the Wnt/β-catenin pathway. Metabolism 69, 130–142, https://doi.org/10.1016/j.meta....
 
23.
Donoiu I., Militaru C., Obleagă O., Hunter J.M., Neamţu J., Biţă A., Scorei I.R., Rogoveanu O.C., 2018. Effects of boron-containing compounds on cardiovascular disease risk factors – a review. J. Trace Elem. Med. Biol. 50, 47–56, https://doi.org/10.1016/j.jtem....
 
24.
EPA (U.S. Environmental Protection Agency), 2004. Toxicological Review of Boron and Compounds. EPA 635/04/052, https://cfpub.epa.gov/ncea/iri....
 
25.
Fort D.J., Stover E.L., Strong P.L., Murray F.J., 1999b. Effect of boron deprivation on reproductive parameters in Xenopus laevis. J. Trace Elem. Exp. Med. 12, 187–204, https://doi.org/10.1002/(SICI)...<187::AID-JTRA3>3.0.CO;2-J
 
26.
Fort D.J., Stover E.L., Strong P.L., Murray F.J., Keen C.L., 1999a. Chronic feeding of a low boron diet adversely affects reproduction and development in Xenopus laevis. J. Nutr. 129, 2055–2060, https://doi.org/10.1093/jn/129....
 
27.
Fry R.S., Lloyd K.E., Jacobi S.K., Siciliano P.D., Robarge W.P., Spears J.W., 2010. Effect of dietary boron on immune function in growing beef steers. J. Anim. Physiol. Anim. Nutr. 94, 273–279, https://doi.org/10.1111/j.1439...
 
28.
Geyikoglu F., Turkez H., 2008. Boron compounds reduce vanadium tetraoxide genotoxicity in human lymphocytes. Environ. Toxicol. Pharmacol. 26, 342–347, https://doi.org/10.1016/j.etap....
 
29.
Graham S.J.L., Black M.J., Soboloff J., Gill D.L., Dziadek M.A., Johnstone L.S., 2009. Stim1, an endoplasmic reticulum Ca2+ sensor, negatively regulates 3T3-L1 pre-adipocyte differentiation. Differentiation 77, 239–247, https://doi.org/10.1016/j.diff....
 
30.
Hakki S.S., Dundar N., Kayis S.A., Hakki E.E., Hamurcu M., Kerimoglu U., Baspinar N., Basoglu A., Nielsen F.H., 2013. Boron enhances strength and alters mineral composition of bone in rabbits fed a high energy diet. J. Trace Elem. Med. Biol. 27, 148–153, https://doi.org/10.1016/j.jtem....
 
31.
Henderson K.A., Kobylewski S.E., Yamada K.E., Eckhert C.D., 2015. Boric acid induces cytoplasmic stress granule formation, eIF2α phosphorylation, and ATF4 in prostate DU-145 cells. Biometals 28, 133–141, https://doi.org/10.1007/s10534....
 
32.
Hopewell J.W., Morris G.M., Schwint A., Coderre J.A., 2011. The radiobiological principles of boron neutron capture therapy: a critical review. Appl. Radiat. Isot. 69, 1756–1759, https://doi.org/10.1016/j.apra....
 
33.
Horiguchi H., Sato T., Kumada H., Yamamoto T., Sakae T., 2015. Estimation of relative biological effectiveness for boron neutron capture therapy using the PHITS code coupled with a microdosimetric kinetic model. J. Radiat. Res. 56, 382–390, https://doi.org/10.1093/jrr/rr....
 
34.
Hu Q., Li S., Qiao E., Tang Z., Jin E., Jin G., Gu Y., 2014. Effects of boron on structure and antioxidative activities of spleen in rats. Biol. Trace Elem. Res. 158, 73–80, https://doi.org/10.1007/s12011....
 
35.
Hunt C.D., 1998. Regulation of enzymatic activity: One possible role of dietary boron in higher animals and humans. Biol. Trace Elem. Res. 66, 205–225, https://doi.org/10.1007/BF0278....
 
36.
Hunt C.D., 2003. Dietary boron: An overview of the evidence for its role in immune function. J. Trace Elem. Exp. Med. 16, 291–306, https://doi.org/10.1002/jtra.1...
 
37.
Hunt C.D., 2008. Dietary boron: Possible roles in human and animal physiology. Biomed. Res. Trace Elem. 19, 243–253.
 
38.
Hunt C.D., 2012. Dietary boron: Progress in establishing essential roles in human physiology. J. Trace Elem. Med. Biol. 26, 157–160, https://doi.org/10.1016/j.jtem....
 
39.
Hunt C.D., Idso J.P., 1999. Dietary boron as a physiological regulator of the normal inflammatory response: a review and current research progress. J. Trace Elem. Exp. Med. 12, 221–233, https://doi.org/10.1002/(SICI)...<221::AID-JTRA6>3.0.CO;2-X.
 
40.
Hunter J.M., Nemzer B.V., Rangavajla N. et al., 2019. The fructoborates: Part of a family of naturally occurring sugar-borate complexes – biochemistry, physiology, and impact on human health: a review. Biol. Trace Elem. Res. 188, 11–25, 11–25, https://doi.org/10.1007/s12011....
 
41.
Ince S., Kucukkurt I., Cigerci I.H., Fidan A.F., Eryavuz A., 2010. The effects of dietary boric acid and borax supplementation on lipid peroxidation, antioxidant activity, and DNA damage in rats. J. Trace Elem. Med. Biol. 24, 161–164, https://doi.org/10.1016/j.jtem....
 
42.
Ince S., Kucukkurt I., Demirel H.H., Acaroz D.A., Akbel E., Cigerci I.H., 2014. Protective effects of boron on cyclophosphamide induced lipid peroxidation and genotoxicity in rats. Chemosphere 108, 197–204, https://doi.org/10.1016/j.chem....
 
43.
Jin E., Gu Y., Wang J., Jin G., Li S., 2014. Effect of supplementation of drinking water with different levels of boron on performance and immune organ parameters of broilers. Ital. J. Anim. Sci. 13, 204–214, https://doi.org/10.4081/ijas.2....
 
44.
Kabata-Pendias A., 2000. Trace Elements in Soils and Plants. 3rd Edition. CRC Press. Boca Raton, FL (USA), pp. 169–179, https://doi.org/10.1201/978142....
 
45.
Kabu M., Akosman M.S., 2013. Biological effects of boron. In: D.M. Whitacre (Editor). Reviews of Environmental Contamination and Toxicology, Volume 225. Springer Science+Business Media. New York, NY (USA), pp. 57–75, https://doi.org/10.1007/978-1-....
 
46.
Kabu M., Birdane F.M., Civelek T., Uyarlar C., 2013. Effects of boron administration on serum Ca, Mg and P for peripartum cows. Arch. Tierz. 56, 733–741, https://doi.org/10.7482/0003-9....
 
47.
Kabu M., Civelek T., 2012. Effects of propylene glycol, methionine and sodium borate on metabolic profile in dairy cattle during periparturient period. Rev. Med. Vet. 163, 419–430.
 
48.
Kabu M., Uyarlar C., Żarczyńska K., Milewska W., Sobiech P., 2015. The role of boron in animal health. J. Elem. 20, 535–541, https://doi.org/10.5601/jelem.....
 
49.
Korkmaz M., Uzgören E., Bakırdere S., Aydın F., Ataman O.Y., 2007. Effects of dietary boron on cervical cytopathology and on micronucleus frequency in exfoliated buccal cells. Environ. Toxicol. 22, 17–25, https://doi.org/10.1002/tox.20....
 
50.
Kot F.S., 2009. Boron sources, speciation and its potential impact on health. Rev. Environ. Sci. Bio/Technol. 8, 3–28, https://doi.org/10.1007/s11157....
 
51.
Lanoue L., Taubeneck M.W., Muniz J., Hanna L.A., Strong P.L., Murray F.J., Nielsen F.H., Hunt C.D., Keen C.L., 1998. Assessing the effects of low boron diets on embryonic and fetal development in rodents using in vitro and in vivo model systems. Biol. Trace Elem. Res. 66, 271–298, https://doi.org/10.1007/BF0278....
 
52.
Litovitz T.L., Klein-Schwartz W., Oderda G.M., Schmitz B.F., 1988. Clinical manifestations of toxicity in a series of 784 boric acid ingestions. Am. J. Emerg. Med. 6, 209–213, https://doi.org/10.1016/0735-6....
 
53.
Mahabir S., Spitz M.R., Barrera S.L., Dong Y.Q., Eastham C., Forman M.R., 2008. Dietary boron and hormone replacement therapy as risk factors for lung cancer in women. Am. J. Epidemiol. 167, 1070–1080, https://doi.org/10.1093/aje/kw....
 
54.
Meldolesi J., 2008. Inhibition of adipogenesis: a new job for the ER Ca2+ pool. J. Cell Biol. 182, 11–13, https://doi.org/10.1083/jcb.20....
 
55.
Militaru C., Donoiu I., Craciun A., Scorei I.D., Bulearca A.M., Scorei R.I., 2013. Oral resveratrol and calcium fructoborate supplementation in subjects with stable angina pectoris: effects on lipid profiles, inflammation markers, and quality of life. Nutrition 29, 178–183, https://doi.org/10.1016/j.nut.....
 
56.
Mogoşanu G.D., Biţă A., Bejenaru L.E. et al., 2016. Calcium fructoborate for bone and ccardiovascular health. Biol. Trace Elem. Res. 172, 277–281, https://doi.org/10.1007/s12011....
 
57.
Naghii M.R., Mofid M., Asgari A.R., Hedayati M., Daneshpour M.S., 2011. Comparative effects of daily and weekly boron supplementation on plasma steroid hormones and proinflammatory cytokines. J. Trace Elem. Med. Biol. 25, 54–58, https://doi.org/10.1016/j.jtem....
 
58.
Naghii M.R., Samman S., 1996. The effect of boron supplementation on the distribution of boron in selected tissues and on testosterone synthesis in rats. J. Nutr. Biochem. 7, 507–512, https://doi.org/10.1016/0955-2....
 
59.
Naghii M.R., Samman S., 1997. The effect of boron on plasma testosterone and plasma lipids in rats. Nutr. Res. 17, 523–531, https://doi.org/10.1016/S0271-....
 
60.
Nielsen F.H., 2002. The nutritional importance and pharmacological potential of boron for higher animals and human. In: H.E. Goldbach, B. Rerkasem, M.A. Wimmer, P.H. Brown, M. Thellier, W.R. Bell (Editors). Boron in Plant and Animal Nutrition. Springer Science+Business Media. New York, NY (USA), pp. 37–50, https://doi.org/10.1007/978-1-....
 
61.
Nielsen F.H., 2008. Is boron nutritionally relevant? Nutr. Rev. 66, 183–191, https://doi.org/10.1111/j.1753....
 
62.
Nielsen F.H., 2014. Update on human health effects of boron. J. Trace Elem. Med. Biol. 28, 283–287, https://doi.org/10.1016/j.jtem....
 
63.
Nielsen F.H., 2017. Historical and recent aspects of boron in human and animal health. J. Boron 2, 153–160.
 
64.
Nielsen F.H., Penland J.G., 1999. Boron supplementation of perimenopausal women affects boron metabolism and indices associated with macromineral metabolism, hormonal status and immune function. J. Trace Elem. Exp. Med. 12, 251–261, https://doi.org/10.1002/(SICI)...<251::AID-JTRA8>3.0.CO;2-I.
 
65.
Palacios C., 2006. The role of nutrients in bone health, from A to Z. Crit. Rev. Food Sci. Nutr. 46, 621–628, https://doi.org/10.1080/104083....
 
66.
Penland J.P., 1998. The importance of boron nutrition for brain and psychological function. Biol. Trace Elem. Res. 66, 299–317, https://doi.org/10.1007/BF0278....
 
67.
Pietrzkowski Z., Phelan M.J., Keller R., Shu C., Argumedo R., Reyes-Izquierdo T., 2014. Short-term efficacy of calcium fructoborate on subjects with knee discomfort: a comparative, double-blind, placebo-controlled clinical study. Clin. Interv. Aging. 2017, 895–899, https://doi.org/10.2147/CIA.S6....
 
68.
Pietrzkowski Z., Roldán Mercado-Sesma A., Argumedo R., Cervantes M., Nemzer B., Reyes-Izquierdo T., 2018. Effects of once-daily versus twice daily dosing of calcium fructoborate on knee discomfort. A 90-day, double-blind, placebo controlled randomized clinical study. J. Aging Res. Clin. Pract. 7, 31–36, https://doi.org/10.14283/jarcp....
 
69.
Pizzorno L., 2015. Nothing boring about boron. Integr. Med. (Encinitas) 14, 35–48.
 
70.
Restuccio A., Mortensen M.E., Kelley M.T., 1992. Fatal ingestion of boric acid in an adult. Am. J. Emerg. Med. 10, 545–547, https://doi.org/10.1016/0735-6....
 
71.
Rogoveanu O.C., Mogoşanu G.D., Bejenaru C. et al., 2015. Effects of calcium fructoborate on levels of C-reactive protein, total cholesterol, low-density lipoprotein, triglycerides, IL-1β, IL-6, and MCP-1: a double-blind, placebo-controlled clinical study. Biol. Trace Elem. Res. 163, 124–131, https://doi.org/10.1007/s12011....
 
72.
Rondanelli M., Opizzi A., Perna S., Faliva M.A., 2013. Update on nutrients involved in maintaining healthy bone. Endocrinol. Nutr. 60, 197–210, https://doi.org/10.1016/j.endo....
 
73.
Rozbicka-Wieczorek A.J., Czauderna M., Więsyk E., Radzik-Rant A., 2016. Selenium species in diet containing carnosic acid, fish and rapeseed oils affect fatty acid profiles in lamb muscles. J. Anim. Feed Sci. 25, 216–225, https://doi.org/10.22358/jafs/....
 
74.
Rudd C.J., 1991. Mouse lymphoma cell mutagenesis assay (tK+/-/tK-/-) of boric acid. Submitted by U.S. Borax Corp. MRID. No. 4203902
 
75.
Scorei R.I., 2011. Boron compounds in the breast cancer cells chemoprevention and chemotherapy. In: E. Gunduz (Editor). Breast Cancer – Current and Alternative Therapeutic Modalities. IntechOpen Ltd. London (UK), pp. 91–114, https://doi.org/10.5772/20405.
 
76.
Scorei R.I., Rotaru P., 2011. Calcium fructoborate – potential anti-inflammatory agent. Biol. Trace Elem. Res. 143, 1223–1238, https://doi.org/10.1007/s12011....
 
77.
Sizmaz O., Koksal B.H., Yildiz G., 2017. Rumen microbial fermentation, protozoan abundance and boron availability in yearling rams fed diets with different boron concentrations. J. Anim. Feed Sci. 26, 59–64, https://doi.org/10.22358/jafs/....
 
78.
Soriano-Ursúa M.A., Das B.C., Trujillo-Ferrara J.G., 2014. Boron containing compounds: chemico-biological properties and expanding medicinal potential in prevention, diagnosis and therapy. Expert Opin. Ther. Patents 24, 485–500, https://doi.org/10.1517/135437....
 
79.
Stef L., Drinceanu D., Stef D.S., Peţ I., Peţ E., Simiz E., 2014. Effects of new mineral sources for boron supplementation on meat quality in broilers. Roman. Biotechnol. Lett. 19, 9585–9596.
 
80.
Sun P., Luo Y., Wu X.T., Ansari A.R., Wang J., Yang K., Xiao K., Peng K., 2016. Effects of supplemental boron on intestinal proliferation and apoptosis in African ostrich chicks. Int. J. Morphol. 34, 830–835, https://doi.org/10.4067/S0717-....
 
81.
Tanaka M., Fujiwara T., 2008. Physiological roles and transport mechanisms of boron: perspectives from plants. Pflugers Arch. 456, 671–677, https://doi.org/10.1007/s00424....
 
82.
Tepedelen B.E., Korkmaz M., Tatlisumak E., Uluer E.T., Ölmez E., Değerli İ., Soya E., İnan S., 2017. A study on the anticarcinogenic effects of calcium fructoborate. Biol. Trace Elem. Res. 178, 210–217, https://doi.org/10.1007/s12011....
 
83.
Trifunovic A., Larsson N.-G., 2008. Mitochondrial dysfunction as a cause of ageing. J. Intern. Med. 263, 167–178, https://doi.org/10.1111/j.1365....
 
84.
Türkez H., Geyikoğlu F., Tatar A., Keleş S., Ozkan A., 2007. Effects of some boron compounds on peripheral human blood. Z. Naturforsch. C 62, 889–896, https://doi.org/10.1515/znc-20....
 
85.
Turkez H., Tatar A., Hacımuftuoglu A., Ozdemir E., 2010. Boric acid as a protector against paclitaxel genotoxicity. Acta Biochim. Pol. 57, 95–97, https://doi.org/10.18388/abp.2....
 
86.
U.S. Department of Health and Human Services, 2010. Toxicological Profile for Boron. Agency for Toxic Substances and Disease Registry. Atlanta, GA (USA), pp. 248, https://www.atsdr.cdc.gov/toxp....
 
87.
Uluisik I., Karakaya H.C., Koc A., 2018. The importance of boron in biological systems. J. Trace Elem. Med. Biol. 45, 156–162, https://doi.org/10.1016/j.jtem....
 
88.
Van Paemel M., Dierick N., Janssens G., Fievez V., De Smet S., 2010. Selected trace and ultratrace elements: Biological role, content in feed and requirements in animal nutrition – Elements for risk assessment. European Food Safety Authority (EFSA). Question No EFSA-Q-2008-04990, https://doi.org/10.2903/sp.efs....
 
89.
Vijay Bhasker T., Gowda N.K.S., Mondal S., Krishnamoorthy P., Pal D.T., Mor A., Karthik Bhat S., Pattanaik A.K., 2016. Boron influences immune and antioxidant responses by modulating hepatic superoxide dismutase activity under calcium deficit abiotic stress in Wistar rats. J. Trace Elem. Med. Biol. 36, 73–79, https://doi.org/10.1016/j.jtem....
 
90.
Wang W., Xiao K., Zheng X., Zhu D., Yang Z., Tang J., Sun P., Wang J., Peng K., 2014. Effects of supplemental boron on growth performance and meat quality in African ostrich chicks. J. Agric. Food Chem. 62, 11024−11029, https://doi.org/10.1021/jf5017....
 
91.
WHO (World Health Organization), 1996. Trace Elements in Human Nutrition and Health. World Health Organization. Genova (Italy), pp. 361.
 
 
CITATIONS (35):
1.
 
2.
 
3.
 
4.
 
5.
 
6.
 
7.
 
8.
 
9.
 
10.
 
11.
 
12.
 
13.
 
14.
 
15.
 
16.
 
17.
 
18.
 
19.
 
20.
 
21.
 
22.
 
23.
 
24.
 
25.
 
26.
 
27.
 
28.
 
29.
 
30.
 
31.
 
32.
 
33.
 
34.
 
35.
 
ISSN:1230-1388
Journals System - logo
Scroll to top