ORIGINAL PAPER
The apelin-13 influences the activity of pancreatic enzymes in young rats
,
 
,
 
,
 
,
 
,
 
 
 
More details
Hide details
1
The Kielanowski Institute of Animal Physiology and Nutrition Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
 
2
University of Life Sciences, Faculty of Veterinary Medicine, Department of Animal Physiology, Akademicka 12, 20-950 Lublin, Poland
 
3
University of Shizuoka, Laboratory of Physiology, 422-8526 Shizuoka, Japan
 
4
Warsaw University of Life Sciences - SGGW, Faculty of Veterinary Medicine, Department of Physiological Sciences, Nowoursynowska 166, 02-766 Warsaw, Poland
 
 
Publication date: 2016-05-22
 
 
Corresponding author
H. Antushevich   

The Kielanowski Institute of Animal Physiology and Nutrition Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
 
 
J. Anim. Feed Sci. 2016;25(2):160-166
 
KEYWORDS
ABSTRACT
Apelin and its APJ receptor are present inter alia in colostrum and in the young animal gastrointestinal tract. This peptide exerts numerous effects participating in the appetite and drinking behaviour, gastric acid and insulin secretion. The aim of the study was to investigate the effect of apelin-13 on the activity of pancreatic and gastric enzymes in young animals. The two experiments were carried out on weaning Wistar rats (50 ± 10 g) which received the apelin-13 or physiological saline (in the corresponding control groups) by intragastric or intraperitoneal way twice a day for 10 days (100 nmol · kg–1 body weight). At the end of each experiment rats were sacrificed and blood samples were collected for apelin and cholecystokinin (CCK) radioimmunoassay. The fragments of the pancreas and stomach were weighted and frozen for the further digestive enzymes activity analysis. The intragastric and intraperitoneal administration of apelin-13 increased plasma CCK level in young rats. The intraperitoneal injection of apelin-13 stimulated pancreatic trypsin, α-amylase and lipase activity, but had no effect on the activity of gastric enzymes. On the other hand, the intragastric administration of apelin-13 stimulated only the activity of pancreatic lipase and had no effect on the activity of gastric pepsin and rennet. So, circulating apelin exerts the most pronounced effect on pancreatic enzymes activity in young rats, but neither circulating nor luminal apelin influences gastric enzymes activity. Regardless the route of administration, apelin stimulates lipase activity which points out its considerable role in the regulation of the fat digestion.
REFERENCES (38)
1.
Antushevich H., Bierła J., Pawlina B., Kapica M., Krawczyńska A., Herman A.P., Kato I., Kuwahara A., Zabielski R., 2015. Apelin’s effects on young rat gastrointestinal tract maturation. Peptides 65, 1–5.
 
2.
Antushevich H., Kapica M., Krawczynska A., Herman A.P., Kato I., Kuwahara A., Zabielski R., 2016. The role of apelin in the modulation of gastric and pancreatic enzymes activity in adult rats. J. Physiol. Pharmacol. 67 (in press).
 
3.
Antushevich H., KrawczyńskaA., Kapica M.,HermanA.P., Zabielski R., 2014. Effect of apelin on mitosis, apoptosis and DNA repair enzyme OGG 1/2 expression in intestinal cell lines IEC-6 and Caco-2. Folia Histochem. Cytobiol. 52, 51–59.
 
4.
Antushevich H., Pawlina B., Kapica M., Krawczynska A., Herman A.P., Kuwahara A., Kato I., Zabielski R., 2013. Influence of fundectomy and intraperitoneal or intragastric administration of apelin on apoptosis, mitosis, and DNA repair enzyme OGG1,2 expression in adult rats gastrointestinal tract and pancreas. J. Physiol. Pharmacol. 64, 423–428.
 
5.
Aydin S., 2010. The presence of the peptides apelin, ghrelin and nesfatin-1 in the human breast milk, and the lowering of their levels in patients with gestational diabetes mellitus. Peptides 31, 2236–2240.
 
6.
Aydin S., Eren M.N., Sahin I., Aydin S., 2014. The role of apelins in the physiology of the heart. Protein Pept. Lett. 21, 2–9.
 
7.
Castan-Laurell I., Dray C., Attané C., Duparc T., Knauf C., Valet P., 2011. Apelin, diabetes, and obesity. Endocrine 40, 1–9.
 
8.
Chandra R., Liddle R.A., 2009. Neural and hormonal regulation of pancreatic secretion. Curr. Opin. Gastroenterol. 25, 441–446.
 
9.
De Mota N., Lenkei Z., Llorens-Cortés C., 2000. Cloning, pharmacological characterization and brain distribution of the rat apelin receptor. Neuroendocrinology 72, 400–407.
 
10.
Dunning B.E., Havel P.J., Veith R.C., Taborsky G.J., 1990. Pancreatic and extrapancreatic galanin release during sympathetic neural activation. Am. J. Physiol. – Endocrinol. Metab. 258,e436–e444.
 
11.
Erlanger B.F., Kokowsky N., Cohen W., 1961. The preparation and properties of two new chromogenic substrates of trypsin. Arch. Biochem. Biophys. 95, 271–278.
 
12.
Godlewski M.M., Hallay N., Bierła J.B., Zabielski R., 2007. Molecular mechanism of programmed cell health in gut epithelium of neonatal piglets. J. Physiol. Pharmacol. 58, 97–113.
 
13.
Higuchi K., Masaki T., Gotoh K., Chiba S., Katsuragi I., Tanaka K., Kakuma T., Yoshimatsu H., 2007. Apelin, an APJ receptor ligand, regulates body adiposity and favors the messenger ribonucleic acid expression of uncoupling proteins in mice.
 
14.
Holst J.J., Fahrenkrug J., Knuhtsen S., Jensen S.L., Poulsen S.S., Nielsen O.V., 1984. Vasoactive intestinal polypeptide (VIP) in the pig pancreas: role of VIPergic nerves in control of fluid and bicarbonate secretion. Regul. Pept. 8, 245–259.
 
15.
Hosoya M., Kawamata Y., Fukusumi S. et al., 2000. Molecular and functional characteristics of APJ. Tissue distribution of mRNA and interaction with the endogenous ligand apelin. J. Biol. Chem. 275, 21061–21067.
 
16.
Kapica M., Jankowska A., Antushevich H., Pietrzak P., Bierla J.B., Dembinski A., Zabielski R., 2012. The effect of exogenous apelin on the secretion of pancreatic juice in anaesthetized rats. J. Physiol. Pharmacol. 63, 53–60.
 
17.
Kapica M., Laubitz D., Puzio I., Jankowska A., Zabielski R., 2006. The ghrelin pentapeptide inhibits the secretion of pancreatic juice in rats. J. Physiol. Pharmacol. 54, 691–700.
 
18.
Kapica M., Puzio I., Kato I., Kuwahara A., Zabielski R., 2008. Role of feed-regulating peptides on pancreatic exocrine secretion. J. Physiol. Pharmacol. 59, 145–159.
 
19.
Kapica M., Zabielska M., Puzio I., Jankowska A., Kato I., Kuwahara A., Zabielski R., 2007. Obestatin stimulates the secretion of pancreatic juice enzymes through a vagal pathway in anaesthetized rats - preliminary results. J. Physiol. Pharmacol. 58, 123–130.
 
20.
Kawamata Y., Habata Y., Fukusumi S. et al., 2001. Molecular properties of apelin: tissue distribution and receptor binding. Biochim. Biophys. Acta. 1538, 162–171.
 
21.
Lee M.G., Ohana E., Park H.W., Yang D., Muallem S., 2012. Molecular mechanism of pancreatic and salivary glands fluid and HCO3 − secretion. Phys. Rev. 92, 39–74.
 
22.
Li F., Li L., Qin X. et al., 2008. Apelin-induced vascular smooth muscle cell proliferation: the regulation of cyclin D1. Front. Biosci. 13, 3786–3792.
 
23.
Lowry O.H., Rosenbrough N.J., Farr A.L., Randall R.J., 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275.
 
24.
Lv S.-Y., Yang Y.-J., Chen Q., 2013. Regulation of feeding behavior, gastrointestinal function and fluid homeostasis by apelin. Peptides 44, 87–92.
 
25.
Maguire J.J., Kleinz M.J., Pitkin S.L., Davenport A.P., 2009. [Pyr1] apelin-13 identified as the predominant apelin isoform in the human heart: vasoactive mechanisms and inotropic action in disease. Hypertension 54, 598–604.
 
26.
Medhurst A.D., Jennings C.A., Robbins M.J. et al., 2003. Pharmacological and immunohistochemical characterization of the APJ receptor and its endogenous ligand apelin. J. Neurochem. 84, 1162–1172.
 
27.
Mesmin C., Fenaille F., Becher F., Tabet J.-C., Ezan E., 2011. Identification and characterization of apelin peptides in bovine colostrum and milk by liquid chromatography-mass spectrometry. J. Proteome Res. 10, 5222–5231.
 
28.
Nawrot-Porąbka K., Jaworek J., Leja-SzpakA., Szklarczyk J., Macko M., Kot M., Mitis-Musioł M., Konturek S.J., Pawlik W.W., 2007. The effect of luminal ghrelin on pancreatic enzyme secretion in the rat. Regul. Pept. 143, 56–63.
 
29.
Novak I., 2003. ATP as a signaling molecule: the exocrine focus. News Phys. Sci. 18, 12–17.
 
30.
O’Dowd B.F., HeiberM., ChanA., Heng H.H.Q., Tsui L.-C., Kennedy J.L., Shi X., Petronis A., George S.R., Nguyen T., 1993. A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene 136, 355–360.
 
31.
Rehfeld J.F., 1989. Cholecystokinin. In: G.M. Makhlouf, S.G. Schultz (Editors). Handbook of Physiology. Section 6: The Gastrointestinal System. Volume II: Neural and Endocrine Biology. Oxford University Press, New York, NY (USA), pp. 337–358.
 
32.
Sheikh S.P., Holst J.J., Skak-Nielsen T., Knigge U., Warberg J., Theodorsson-Norheim E., Hokfelt T., Lundberg J.M., Schwartz T.W., 1988. Release of NPY in pig pancreas: dual parasympathetic and sympathetic regulation. Am. J. Physiol. - Gastrointest. Liver Physiol. 255, G46–G54.
 
33.
Sobhani I., Buyse M., Goïot H., Weber N., Laigneau J.-P., Henin D., Soulé J.C., Bado A., 2002. Vagal stimulation rapidly increases leptin secretion in human stomach. Gastroenterology 122, 259–263.
 
34.
Taheri S., Murphy K., Cohen M., Sujkovic E., Kennedy A., Dhillo W., Dakin C., Sajedi A., Ghatei M., Bloom S., 2002. The effects of centrally administered apelin-13 on food intake, water intake and pituitary hormone release in rats. Biochem. Biophys. Res. Commun. 291, 1208–1212.
 
35.
Tatemoto K., Hosoya M., Habata Y. et al., 1998. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem. Biophys. Res. Commun. 251, 471–476.
 
36.
Walker V., Taylor W.H., 1979. Pepsin 5 in gastric juice: determination and relationship to the alkali-stable peptic activity. Gut 20, 977–982.
 
37.
Wang G., Kundu R., Han S., Qi X., Englander E.W., Quertermous T., Greeley G.H. Jr., 2009. Ontogeny of apelin and its receptor in the rodent gastrointestinal tract. Regul. Pept. 27, 32–39.
 
38.
Zabielski R., Leśniewska V., Borlak J., Gregory P.C., Kiela P., Pierzynowski S.G., Barej W., 1998. Effects of intraduodenal administration of tarazepide on pancreatic secretion and duodenal EMG in neonatal calves. Regul. Pept. 78, 113–123.
 
 
CITATIONS (3):
1.
Peripheral apelin-13 administration inhibits gastrointestinal motor functions in rats: The role of cholecystokinin through CCK 1 receptor-mediated pathway
Mehmet Bülbül, Osman Sinen, İlknur Birsen, V. Nimet İzgüt-Uysal
Neuropeptides
 
2.
Exogenous obestatin affects pancreatic enzyme secretion in rat through two opposite mechanisms, direct inhibition and vagally-mediated stimulation
M. Kapica, I. Puzio, I. Kato, A. Kuwahara, R. Zabielski, H. Antushevich
Journal of Animal and Feed Sciences
 
3.
Review: Apelin in disease
Hanna Antushevich, Maciej Wójcik
Clinica Chimica Acta
 
ISSN:1230-1388
Journals System - logo
Scroll to top