ORIGINAL PAPER
The effects of heat stress in Jersey, Hungarian Simmental
and Holstein-Friesian cows
More details
Hide details
1
University of Veterinary Medicine, Department of Animal Hygiene, Herd Health and Mobile Clinic, 1078 Budapest, Hungary
2
University of Veterinary Medicine, Department of Obstetrics and Food Animal Medicine Clinic 1078 Budapest, Hungary
3
Institute of Animal Sciences, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
4
University of Veterinary Medicine, Department of Biomathematics and Informatics, 1078 Budapest, Hungary
Publication date: 2022-12-03
Corresponding author
V. Jurkovich
Department of Animal Hygiene, Herd Health and Mobile Clinic, University of Veterinary Medicine
J. Anim. Feed Sci. 2023;32(1):68-75
KEYWORDS
TOPICS
ABSTRACT
The effects of heat stress on the concentration of 70 kDa heat shock
protein (HSP70) in plasma and saliva, plasma insulin concentration and some
metabolic indices (plasma glucose, free fatty acids, beta-hydroxybutyrate and
urea concentrations) were assessed in Holstein-Friesian, Hungarian Simmental
and Jersey cows. The study included 30 animals from a farm breeding Holstein-
Friesians, 30 from a Jersey farm and 30 from a farm keeping Simmentals (10 dry
cows, 10 mid-lactating and 10 lactating cows from each farm, respectively). Sampling
was performed under thermoneutral (spring) and heat stress (summer) conditions.
Based on plasma HSP70 and insulin concentrations, Holstein cows were
determined to be most susceptible to heat stress. No characteristic breed-related
changes in metabolic indices were found. The results indicated the importance of
heat load-reducing strategies in the Holstein-Friesian breed.
FUNDING
The Project was supported by the European
Union and co-financed by the European Social
Fund (grant agreement No. EFOP-3.6.1-16-2016-
00024). The authors are grateful for the support of
the OTKA Research Scholarship of the National
Research, Development and Innovation Office
(Budapest, Hungary; K-134204). Levente Kovács was
supported by the following grants: 2020-1.1.2-PIACIKFI-
2020-00109, 2020-1.1.2-PIACI-KFI-2020-00142,
2020-1.1.2-PIACI-KFI-2021-00290 and GINOP
PLUSZ-2.1.1-21-1366973.
CONFLICT OF INTEREST
The Authors declare that there is no conflict of
interest.
REFERENCES (46)
1.
Allen J.D., Hall L.W., Collier R.J., Smith J.F., 2015. Effect of core body temperature, time of day, and climate conditions on behavioral patterns of lactating dairy cows experiencing mild to moderate heat stress. J. Dairy Sci. 98, 118–127,
https://doi.org/10.3168/jds.20...
2.
Aneja R., Odoms K., Dunsmore K., Shanley T.P., Wong H.R., 2006. Extracellular heat shock protein-70 induces endotoxin tolerance in THP-1 cells. J. Immunol. 177, 7184–7192,
https://doi.org/10.4049/jimmun...
3.
Baek Y.C., Kim M., Jeong J.Y., Oh Y.K., Lee S.D., Lee Y.K., Ji S.Y., Choi H., 2019. Effects of short-term acute heat stress on physiological responses and Heat Shock Proteins of Hanwoo steer (Korean Cattle). J. Anim. Reprod. Biotechnol. 34, 173–182,
https://doi.org/10.12750/JARB....
4.
Bakony M., Könyves L., Hejel P., Kovács L., Jurkovich V., 2019. Heat stress in dairy cows Part 1. – A review on physiological factors involved in milk yield loss (in Hungarian). Magy. Állatorv. Lapja 141, 341–350
6.
Baumgard L.H., Wheelock J.B., Sanders S.R., Moore C.E., Green H.B., Waldron M.R., Rhoads R.P., 2011. Postabsorptive carbohydrate adaptations to heat stress and monensin supplementation in lactating Holstein cows. J. Dairy Sci. 94, 5620–5633,
https://doi.org/10.3168/jds.20...
7.
Bianca W., 1962. Relative importance of dry- and wet-bulb temperatures in causing heat stress in cattle. Nature 195, 251–252
8.
Calamari L., Petrera F., Abeni F., Bertin G., 2011. Metabolic and hematological profiles in heat stressed lactating dairy cows fed diets supplemented with different selenium sources and doses. Livest. Sci. 142, 128–137,
https://doi.org/10.1016/j.livs...
9.
Catalani E., Amadori M., Vitali A., Bernabucci U., Nardone N., Lacetera N., 2010. The Hsp72 response in peri-parturient dairy cows: relationships with metabolic and immunological parameters. Cell Stress Chaperones 15, 781–790,
https://doi.org/10.1007/s12192...
10.
Collier R.J., Dahl G.E., van Baale M.J., 2006. Major advances associated with environmental effects on dairy cattle. J. Dairy Sci. 89, 1244–1253,
https://doi.org/10.3168/jds.s0...
11.
Collier R.J., Eley R.M., Sharma A.K., Pereira R.M., Buffington D.E., 1981. Shade management in subtropical environment for milk yield and composition in Holstein and Jersey cows. J. Dairy Sci. 64, 844–849,
https://doi.org/10.3168/jds.S0...
12.
Dado-Senn B., Vega Acosta L., Torres Rivera M. et al., 2020. Pre- and postnatal heat stress abatement affects dairy calf thermoregulation and performance. J. Dairy Sci. 103, 4822–4837,
https://doi.org/10.3168/jds.20...
13.
Fournel S., Ouellet V., Charbonneau É., 2017. Practices for alleviating heat stress of dairy cows in humid continental climates: a literature review. Animals 7, 37,
https://doi.org/10.3390/ani705...
14.
Gantner V., Bobic T., Gregic M., Gantner R., Kuterovac K., Potocnik K., 2017a. The differences in heat stress resistance due to dairy cattle breed. Mljekarstvo 67, 112–122,
https://doi.org/10.15567/mljek...
15.
Gantner V., Bobic T., Gantner R., Gregic M., Kuterovac K., Novakovic J., Potocnik K., 2017b. Differences in response to heat stress due to production level and breed of dairy cows. Int. J. Biometeorol. 61, 1675–1685,
https://doi.org/10.1007/s00484...
16.
Garner J.B., Douglas M.S., Williams R.O., Wales W.J., Marett L.C., DiGiacomo K., Leury B.J., Hayes B.J., 2017. Responses of dairy cows to short-term heat stress in controlled-climate chambers. Anim. Prod. Sci. 57, 1233–1241,
https://doi.org/10.1071/AN1647...
17.
Gaughan J.B., Bonner S.L., Loxton I., Mader T.L., 2013. Effects of chronic heat stress on plasma concentration of secreted heat shock protein 70 in growing feedlot cattle. J. Anim. Sci. 91, 120–129,
https://doi.org/10.2527/jas.20...
18.
Hansen P.J., 2013. Genetic control of heat stress in dairy cattle. Proceedings 49th Florida Dairy Production Conference. Gainesville, FA (USA)
19.
Harris D.L., Shrode R.R., Rupel I.W., Leighton R.E., 1960. A study of solar radiation as related to physiological and production responses of lactating Holstein and Jersey cows. J. Dairy Sci. 43, 1255–1262,
https://doi.org/10.3168/jds.S0...
21.
Itoh F., Obara Y., Rose M.T., Fuse H., Hashimoto H., 1998. Insulin and glucagons secretion in lactating cows during heat exposure. J. Anim. Sci. 76, 2182–2189,
https://doi.org/10.2527/1998.7...
22.
Johnson J.D., Campisi J., Sharkey C.M., Kennedy S.L., Nickerson M., Fleshner M., 2005. Adrenergic receptors mediate stress-induced elevations in extracellular Hsp72. J. Appl. Physiol. 99, 1789–1795,
https://doi.org/10.1152/japplp...
23.
Kadzere C.T., Murphy M.R., Silanikove N., Maltz E., 2002. Heat stress in lactating dairy cows: a review. Livest. Prod. Sci. 77, 59–91,
https://doi.org/10.1016/S0301-...
24.
Kiang J.G., Tsokos G.C., 1998. Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol. Ther. 80, 183–201,
https://doi.org/10.1016/s0163-...
25.
Kregel K.C., 2002. Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J. Appl. Physiol. 5, 2177–2186,
https://doi.org/10.1152/japplp...
26.
Kristensen T.N., Løvendahl P., Berg P., Loeschcke V., 2004. Hsp72 is present in plasma from Holstein-Friesian dairy cattle, and the concentration level is repeatable across days and age classes. Cell Stress Chaperones 9, 143–149,
https://doi.org/10.1379/CSC-17...
27.
Kumar J., Yadav B., Kumar Madan A., Kumar M., Sirohi R., Vidyasagar Reddy A., 2020. Dynamics of heat-shock proteins, metabolic and endocrine responses during increasing temperature humidity index (THI) in lactating Hariana (Zebu) cattle. Biol. Rhythm Res. 51, 934–950,
https://doi.org/10.1080/092910...
28.
Kvidera S.K., Dickson M.J., Abuajamieh M. et al., 2017. Intentionally induced intestinal barrier dysfunction causes inflammation, affects metabolism, and reduces productivity in lactating Holstein cows. J. Dairy Sci. 100, 4113–4127,
https://doi.org/10.3168/jds.20...
29.
Lamy E., Jurkovich V., Rodrigues L. et al, 2017. Detection of 70 kDa heat shock protein in the saliva of dairy cows. J. Dairy Res. 84, 280–282,
https://doi.org/10.1017/s00220...
30.
Maróti-Agóts Á., Bodó I., Jávorka L., Gyurmán A., Solymosi N., Zenke P., Skogseth M., Zöldág L., 2011. Possible genetic sign of heat stress adaptation in Hungarian Grey Bos taurus breed. Acta Biol. Hung. 62, 65–72,
https://doi.org/10.1556/abiol....
31.
Min L., Zhao S., Tian H., Zhou X., Zhang Y., Li S., Yang H., Zheng N., Wang J., 2017. Metabolic responses and „omics” technologies for elucidating the effects of heat stress in dairy cows. Int. J. Biometeorol. 61, 1149–1158,
https://doi.org/10.1007/s00484...
32.
Molvarec A., Rigó J., Lázár L., Balogh K., Makó V., Cervenak L., Mézes M., Prohászka Z., 2009. Increased serum heat-shock protein 70 levels reflect systemic inflammation, oxidative stress and hepatocellular injury in preeclampsia. Cell Stress Chaperones 14, 151–159,
https://doi.org/10.1007%2Fs121...
33.
Noma A., Okabe H., Kita M., 1973. A new colorimetric micro-determinatoin of free fatty acids in serum. Clin. Chim. Acta 43, 317–320,
https://doi.org/10.1016/0009-8...
35.
R Core Team, 2022. R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna (Austria),
https://www.R-project.org/
36.
Reiczigel J., Solymosi N., Könyves L., Maróti-Agóts Á., Kern A., Bartyik J., 2009. Examination of heat stress caused milk production loss by the use of temperature-humidity indices (in Hungarian). Magy. Állatorv. Lapja 131, 127–144
37.
Rhoads R.P., Sanders S.R., Cole L., Skrzypek M., Elsasser T., Duff G.C., Collier R.J., Baumgard L.H., 2009. Effects of heat stress on glucose homeostasis and metabolic response to an endotoxin challenge in Holstein steers . J. Anim. Sci. 87 (E-Suppl. 2), 78
38.
Rhoads M.L., Kim J.W., Collier R.J., Crooker B.A., Boisclair Y.R., Baumgard L.H., Rhoads R.P., 2013. Effects of heat stress and nutrition on lactating Holstein cows: II. Aspects of hepatic growth hormone responsiveness. J. Dairy Sci. 93, 170–179,
https://doi.org/10.3168/jds.20...
40.
Shilja S., Sejian V., Bagath M., Mech A., David C.G., Kurien E.K., Varma G., Bhatta R., 2016. Adaptive capability as indicated by behavioral and physiological responses, plasma HSP70 level, and PBMC HSP70 expression in Osmanabadi goats subjected to combine (heat and nutritional) stressors. Int. J. Biometeorol. 60, 1311–1323,
https://doi.org/10.1007/s00484...
41.
Shwartz G., Rhoads M.L., VanBaale M.J., Rhoads R.P., Baumgard L.H., 2009. Effects of a supplemental yeast culture on heat-stressed lactating Holstein cows. J. Dairy Sci. 92, 935–942,
https://doi.org/10.3168/jds.20...
42.
Silanikove N., Shapiro F., Shinder D., 2009. Acute heat stress brings down milk secretion in dairy cows by up-regulating the activity of the milk-borne negative feedback regulatory system. BMC Physiol. 9, 13,
https://doi.org/10.1186/1472-6...
43.
Smith D.L., Smith T., Rude B.J., Ward S.H., 2013. Short communication: Comparison of the effects of heat stress on milk and component yields and somatic cell score in Holstein and Jersey cows. J. Dairy Sci. 96, 3028–3033,
https://doi.org/10.3168/jds.20...
44.
Solymosi N., Torma C., Kern A., Maróti-Agóts Á., Barcza Z., Könyves L., Berke O., Reiczigel J., 2010. Changing climate in Hungary and trends in the annual number of heat stress days. Int. J. Biometeorol. 54, 423–431,
https://doi.org/10.1007/s00484...
45.
Wheelock J.B., Rhoads R.P., Vanbaale M.J., Sanders S.R., Baumgard L.H., 2010. Effects of heat stress on energetic metabolism in lactating Holstein cows. J. Dairy Sci. 93, 644–655,
https://doi.org/10.3168/jds.20...
46.
Yániz J.L., López-Gatius F., Almerı́a S., Carretero T., Garcı́a-Ispierto I., Serrano B., Smith R.F, Dobson H., Santolaria P., 2009. Dynamics of heat shock protein 70 concentrations in peripheral blood lymphocyte lysates during pregnancy in lactating Holstein-Friesian cows. Theriogenology 72, 1041–1046,
https://doi.org/10.1016/j.ther...
CITATIONS (3):
1.
Salivary heat shock protein 70 as a potential non-invasive biomarker of environmental thermal stress in dairy cattle
Kandasamy Rajamanickam, Pasuvalingam Visha, Ayyasamy Elango, Venkatasubramanian Leela
International Journal of Biometeorology
2.
Losing a Herd Mate: Negative Effects on Milk Yield and Udder Health Indicators in Loose-Housed Dairy Cattle
Barbora Valníčková, Jitka Bartošová, Luděk Bartoš
Animals
3.
Effects of milk extracellular vesicles from Holstein Friesian and Brown Swiss heat-stressed dairy cows on bovine mammary epithelial cells
S. Castellani, L. Basiricò, A. Maggiolino, C. Lecchi, P. De Palo, U. Bernabucci
Journal of Dairy Science