REVIEW PAPER
 
KEYWORDS
TOPICS
ABSTRACT
Raising insects for animal feed and human nutrition offers a valuable solution to many global problems. Recent regulatory developments have made the European food and feed market more receptive to insects. Concerns about prions causing transmissible spongiform encephalopathy previously limited the use of insects in livestock feed. However, the European Food Safety Authority found that the risk of bovine spongiform encephalopathy transmission from processed animal protein was lower than estimated. Consequently, the feed ban was repealed. Chickens and pigs, significant livestock species, require high protein and essential amino acids for growth. Alternative protein sources, such as insects, can improve production performance and yield economic benefits. Among insect species, black soldier fly (Hermetia illucens L.) is promising and well-tested option. Recent research suggests that black soldier fly larvae (BSFL) can partially replace traditional feed protein sources. This review highlights the potential of BSFL for chicken and pig feed, including improvements in growth, meat quality, metabolic and immune function, and overall animal welfare.
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
REFERENCES (135)
1.
Abd El Ghany S.S.H., Ibrahem R.A., EL-Gendy A.O., Abd El-Baky R.M., Mustafa A., Azmy A.F., 2024. Novel synergistic interactions between monolaurin, a mono-acyl glycerol and β lactam antibiotics against Staphylococcus aureus: an in vitro study. BMC Infect. Dis. 24, 379, https://doi.org/10.1186/s12879....
 
2.
Abd El-Hack M.E., Shafi M.E., Alghamdi W.Y. et al., 2020. Black soldier fly (Hermetia illucens) meal as a promising feed ingredient for poultry: A comprehensive review. Agriculture 10, 339, https://doi.org/10.3390/agricu....
 
3.
Allegratti G., Talaminu E., Schmidt V., Bogorni P.C., Ortega E., 2018. Insect as feed: An emergy assessment of insect meal as a sustainable protein source for the Brazilian poultry industry. J. Clean. Prod. 171, 403–412, https://doi.org/10.1016/j.jcle....
 
4.
Ao X., Kim I.H., 2019. Effects of dietary dried mealworm (Ptecticus tenebrifer) larvae on growth performance and nutrient digestibility in weaning pigs. Livest Sci. 230, 103815, https://doi.org/10.1016/j.livs....
 
5.
Ao X., Yoo J.S., Wu Z.L., Kim I.H., 2020. Can dried mealworm (Tenebrio molitor) larvae replace fish meal in weaned pigs? Livest. Sci. 239, 104103, https://doi.org/10.1016/j.livs....
 
6.
Aprianto M.A., Muhlisin A., Kurniawati A., Hanim C, Ariyadi B., Al Anas M., 2023. Effect supplementation of black soldier fly larvae oil (Hermetia illucens L.) calcium salt on performance, blood biochemical profile, carcass characteristic, meat quality, and gene expression in fat metabolism broilers. Poultry Science 102, 102984, https://doi.org/10.1016/j.psj.....
 
7.
Arena R., Manuguerra S., Curcuraci E., Santulli A., Messina C.M., 2023. Fisheries and aquaculture by-products modulate growth, body composition, and omega-3 polyunsaturated fatty acid content in black soldier fly (Hermetia illucens) larvae. Front. Anim. Sci. 4, https://doi.org/10.3389/fanim.....
 
8.
Astuti D.A., Wiryawan K.G., 2022. Black soldier fly as feed ingredient for ruminants. Anim. Biosci. 35, 356–363, https://doi.org/10.5713/ab.21.....
 
9.
Biasato I., De Marco M., Rotolo L. et al., 2017. Effects of dietary Tenebrio molitor meal inclusion in free-range chickens. J. Anim. Physiol. Anim. Nutr., 101, 125–133, https://doi.org/10.1111/jpn.12....
 
10.
Boeckman J.X., Sprayberry S., Korn A.M. et al., 2022. Effect of chronic and acute enterotoxigenic E. coli challenge on growth performance, intestinal inflammation, microbiome, and metabolome of weaned piglets. Sci. Rep. 12, 5024, https://doi.org/10.1038/s41598....
 
11.
Borrelli L., Varriale L., Dipineto L., Pace A., Menna L.F., Fioretti A., 2021. Insect derived lauric acid as promising alternative strategy to antibiotics in the antimicrobial resistance scenario. Front. Microbiol. 12, 620798, https://doi.org/10.3389/fmicb.....
 
12.
Bovera F., Loponte R., Marono S., Piccolo G., Parisi G., Iaconisi V., Gasco L., Nizza A., 2016. Use of Tenebrio molitor larvae meal as protein source in broiler diet: effect on growth performance, nutrient digestibility, and carcass and meat traits. J. Anim. Sci. 94, 639–647, https://doi.org/10.2527/jas.20....
 
13.
Bovera F., Loponte R., Pero M.E. et al., 2018. Laying performance, blood profiles, nutrient digestibility and inner organs traits of hens fed an insect meal from Hermetia illucens larvae. Res. Vet. Sci. 120, 86–93, https://doi.org/10.1016/j.rvsc....
 
14.
Cherdthong A., 2024. An overview of alternative protein sources for ruminants in the tropical area. Ann. Anim. Sci., https://doi.org/10.2478/aoas-2....
 
15.
Chu X., Li M., Wang G., Wang K., Shang R., Wang Z., Li L., 2020. Evaluation of the low inclusion of full-fatted Hermetia illucens larvae meal for layer chickens: growth performance, nutrient digestibility, and gut health. Front. Vet. Sci. 7, 585843, https://doi.org/10.3389/fvets.....
 
16.
Cickova H., Newton L.G., Lacy R.C., Kozanek M., 2015. The use of fly larvae for organic waste treatment. Waste Manag. 35, 68–80, https://doi.org/10.1016/j.wasm....
 
17.
Crosbie M., Zhu C., Shoveller A.K., Huber L.-A., 2020. Standardized ileal digestible amino acids and net energy contents in full fat and defatted black soldier fly larvae meals (Hermetia illucens) fed to growing pigs. Transl. Anim. Sci. 4, 1–10, https://doi.org/10.1093/tas/tx....
 
18.
Cullere M., Tasoniero G., Giaccone V., Miotti-Scapin R., Claeys E., De Smet S., Dalle Zotte A., 2016. Black soldier fly as dietary protein source for broiler quails: apparent digestibility, excreta microbial load, feed choice, performance, carcass and meat traits. Animal 12, 1923–1930, https://doi.org/10.1017/S17517....
 
19.
Dabbou S., Gai F., Biasato I., Capucchio M.T., Biasibetti E., Dezzutto D., Meneguz M., Placha I., Gasco L., Schiavone A., 2018. Black soldier fly defatted meal as a dietary protein source for broiler chickens: effects on growth performance, blood traits, gut morphology and histological features. J. Anim. Sci. Biotechnol. 9, 49, https://doi.org/10.1186/s40104....
 
20.
Dabbou S., Lauwaerts A., Ferrocino I. et al., 2021. Modified black soldier fly larva fat in broiler diet: effects on performance, carcass traits, blood parameters, histomorphological features and gut microbiota. Animals 11, 1837, https://doi.org/10.3390/ani110....
 
21.
De Marco M., Martinez S., Hernandez F. et al., 2015. Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: Apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. AFST 209, 211–218, https://doi.org/10.1016/j.anif....
 
22.
Diola C.S.D., Nacilla E.J., Pardillo C.A., Alosbanos R.S., 2024. Waste reduction and bioconversion of quail, chicken, and pig manure by black soldier fly (Hermetia illucens L.). Philipp J. Sci. 153, 609–618.
 
23.
Dörper A., Veldkamp T., Dicke M., 2020. Use of black soldier fly and house fly in feed to promote sustainable poultry production. JIFF 7, 761–780, https://doi.org/10.3920/JIFF20....
 
24.
EFSA (European Food Safety Authority), 2015. Annual Report of the European Food Safety Authority for 2015. Opinion dated October 8, 2015, https://www.efsa.europa.eu/sit....
 
25.
Eggink K.M., Lund I., Pedersen P.B., Hansen B.W., Dalsgaard J., 2022. Biowaste and by-products as rearing substrates for black soldier fly (Hermetia illucens) larvae: Effects on larval body composition and performance. PLoS One 17, e0275213, https://doi.org/10.1371/journa....
 
26.
Ewald N., Vidakovic A., Langeland M., Kiessling A., Sampels S., Lalander C., 2020. Fatty acid composition of black soldier fly larvae (Hermetia illucens) – Possibilities and limitations for modification through diet. Waste Manag. 102, 40–47, https://doi.org/10.1016/j.wasm....
 
27.
FAO, 2009. The state of food and agriculture: Livestock in the balance. Food and Agriculture Organization of the United Nations. http://www.fao.org/3/a-i0680e.....
 
28.
Fatima S., Afzal A., Rashid H., Iqbal S., Zafar R., Khalid K., Rauw A., Majeed M., Malik A., Carter C.G., 2023. Dietary replacement of soybean meal with black soldier fly larvae meal in juvenile Labeo rohita and Catla catla: Effects on growth, nutritional quality, oxidative stress biomarkers and disease resistance. PLoS One 18, e0294452, https://doi.org/10.1371/journa....
 
29.
Finke M.D., 2013. Complete nutrient content of four species of feeder insects. Zoo Biol. 32, 27–36, https://doi.org/10.1002/zoo.21....
 
30.
Flis M., Józefiak D., Bielak A., Kasperek K., Kierończyk B., Grela E.R., 2024. Insects as a natural component of pheasant diets: effects of full-fat Hermetia illucens meal on egg production and quality, hatchability, and selected physicochemical egg indices. J. Anim. Feed Sci. 33, 217–225, https://doi.org/10.22358/jafs/....
 
31.
Fraser E.D.G., 2020. The challenge of feeding a diverse and growing population. Physiol. Behav. 221, 112908, https://doi.org/10.1016/j.phys....
 
32.
Fróna D., Szenderák J., Harangi-Rákos M., 2019. The challenge of feeding the world. Sustainability 11, 5816, https://doi.org/10.3390/su1120....
 
33.
Gasco L., Finke M., van Huis A., 2018. Can diets containing insects promote animal health? JIFF 4, 1–4, https://doi.org/10.3920/JIFF20....
 
34.
Georgescu B., Boaru A.M., Muntean L., Sima N., Struți D.I., Păpuc T.A., Georgescu C., 2022. Modulating the fatty acid profiles of Hermetia illucens larvae fats by dietary enrichment with different oilseeds: A sustainable way for future use in feed and food. Insects 13, 801, https://doi.org/10.3390/insect....
 
35.
Gobbi P., Martinez-Sanchez A., Rojo S., 2013. The effects of larval diet on adult life-history traits of the black solider fly, Hermetia illucens (Diptera: Stratiomyidae). Eur. J. Entomol. 110, 461–468, https://doi.org/10.14411/EJE.2....
 
36.
Hancz C., Sultana S., Nagy Z., Biró J., 2024. The role of insects in sustainable animal feed production for environmentally friendly agriculture: A review. Animals 14, 1009. https://doi.org/10.3390/ani140....
 
37.
Hartinger K., Greinix J., Thaler N., Ebbing M.A., Yacoubi N., Schedle K., Gierus M., 2021. Effect of graded substitution of soybean meal by Hermetia illucens larvae meal on animal performance, apparent ileal digestibility, gut histology and microbial metabolites of broilers. Animals 11, 1628, https://doi.org/10.3390/ani110....
 
38.
Hong J., Kim Y.Y., 2022. Insect as feed ingredients for pigs. Anim. Biosci. 35, 347–355, https://doi.org/10.5713/ab.21.....
 
39.
Huseynli L., Parviainen T., Kyllönen T., Aisala H., Vene K., 2023. Exploring the protein content and odor-active compounds of black soldier fly larvae for future food applications. Future Foods 7, 100224, https://doi.org/10.1016/j.fufo....
 
40.
Ipema A.F., Bokkers E.A.M., Gerrits W.J.J., Kemp B., Bolhuis J.E. 2021a. Providing live black soldier fly larvae (Hermetia illucens) improves welfare while maintaining performance of piglets post-weaning. Sci. Rep. 11, 7371, https://doi.org/10.1038/s41598....
 
41.
Ipema A.F., Gerrits W.J.J., Bokkers E.A.M., Kemp B., Bolhuis J.E., 2021b. Live black soldier fly larvae (Hermetia illucens) provisioning is a promising environmental enrichment for pigs as indicated by feed- and enrichment-preference tests. Appl. Anim. Behav. Sci. 244, 105481, https://doi.org/10.1016/j.appl....
 
42.
Ipema A.F., Gerrits W.J.J., Bokkers E.A.M., Van Marvijk M.A., Laurenssen B.F.A., Kemp B., Bolhuis J.E., 2022. Assessing the effectiveness of providing live black soldier fly larvae (Hermetia illucens) to ease the weaning transition of piglets. Front. Vet. Sci. 9, 838018, https://doi.org/10.3389/fvets.....
 
43.
Jin X.H., Heo P.S., Hong J.S., Kim N.J., Kim Y.Y., 2016. Supplementation of dried mealworm (Tenebrio molitor larva) on growth performance, nutrient digestibility and blood profiles in weaning pigs. Asian-Australas J. Anim. Sci. 29, 979–86, https://doi.org/10.5713/ajas.1....
 
44.
Jonas-Levi A., Martinez J.J.I., 2017. The high level of protein content reported in insects for food and feed is overestimated. J. Food Compos. Anal. 62, 184–188, https://doi.org/10.1016/j.jfca....
 
45.
Kaczor M., Bulak P., Proc-Pietrycha K., Kirichenko-Babko M., Bieganowski A., 2023. The variety of applications of Hermetia illucens in industrial and agricultural areas—review. Biology 12, 25, https://doi.org/10.3390/biolog....
 
46.
Khayrova A., Lopatin S., Varlamov V., 2019. Black soldier fly Hermetia illucens as a novel source of chitin and chitosan. Int. J. Sci. 8, 81–86, https://doi.org/10.18483/ijSci....
 
47.
Kim K., Song M., Liu Y., Ji P., 2022. Enterotoxigenic Escherichia coli infection of weaned pigs: Intestinal challenges and nutritional intervention to enhance disease resistance. Front Immunol. 13, 885253, https://doi.org/10.3389/fimmu.....
 
48.
Kipkoech C., 2023. Beyond proteins—edible insects as a source of dietary fiber. Polysaccharides 4, 116–128, https://doi.org/10.3390/polysa....
 
49.
Lähteenmäki-Uutela A., Marimuthu S.B., Meijer N., 2021. Regulations on insects as food and feed: a global comparison. JIFF 7, 849–856, https://doi.org/10.3920/JIFF20....
 
50.
Lee K.S., Yun E.Y., Goo T.W., 2020. Antimicrobial activity of an extract of Hermetia illucens larvae immunized with Lactobacillus casei against Salmonella species. Insects. 11, 704, https://doi.org/10.3390/insect....
 
51.
Li X., Dong Y., Sun Q., Tan X., You C., Huang Y., Zhou M., 2022. Growth and fatty acid composition of black soldier fly Hermetia illucens (Diptera: Stratiomyidae) larvae are influenced by dietary fat sources and levels. Animals 12, 486, https://doi.org/10.3390/ani120....
 
52.
Liceaga A.M., 2021. Processing insects for use in the food and feed industry. Curr. Opin. Insect Sci. 48, 32–36, https://doi.org/10.1016/j.cois....
 
53.
Lievens S., Poma G., De Smet J., Van Campenhout L., Covaci A., Van Der Borght M., 2021. Chemical safety of black soldier fly larvae (Hermetia illucens), knowledge gaps and recommendations for future research: a critical review. JIFF 7, 383–396, https://doi.org/10.3920/JIFF20....
 
54.
Liland N.S., Biancarosa I., Araujo P., Biemans D., Bruckner C.G., Waagbø R., Torstensen B.E., Erik-Jan L., 2017. Modulation of nutrient composition of black soldier fly (Hermetia illucens) larvae by feeding seaweed-enriched media. PLoS One 12, e0183188, https://doi.org/10.1371/journa....
 
55.
Liu Z., Minor M.A., Morel P.C.M., Najar-Rodriguez A.J., 2018. Bioconversion of three organic wastes by black soldier fly (Diptera: Stratiomyidae) Larvae. Environ. Entomol. 47, https://doi.org/10.1093/ee/nvy....
 
56.
Liu X., Chen X., Wang Q., Rehman K., Li W., Cai M., Mazza L., Zhang J., Yu Z., Zheng L., 2017. Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly. PLoS One. 12, e0182601. https://doi.org/10.1371/journa.... eCollection 2017.
 
57.
Lourenço F., Calado R., Medina I., Ameixa O., 2022. The potential impacts by the invasion of insects reared to feed livestock and pet animals in Europe and other regions: a critical review. Sustainability 14, 6361, https://doi.org/10.3390/su1410....
 
58.
Lu S., Taethaisong N., Meethip W. et al., 2022. Nutritional composition of black soldier fly larvae (Hermetia illucens L.) and its potential uses as alternative protein sources in animal diets: A review. Insects 13, 831, https://doi.org/10.3390/insect....
 
59.
Mahmoud A.E., Morel P.C.H., Potter M.A., Ravindran V., 2023. The apparent metabolisasble energy and ileal amino digestibility of black soldier fly (Hermetia illucens) larvae meal for broiler chickens. Brit. Poult. Sci. 64, 377–383, https://doi.org/10.1080/000716....
 
60.
Makkar H.P.S., Tran G., Hauze V., Ankers P., 2014. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol., 197, 1–33, https://doi.org/10.1016/j.anif....
 
61.
Makokha M.P., Muliro P.S., Ngoda P.N., Ghemoh C.J., Xavier C., Tanga C.M., 2023. Nutritional quality of meat from hen fed diet with full-fat black soldier fly (Hermetia illucens) larvae meal as a substitute to fish meal. J. Funct. Foods 101, 105430, https://doi.org/10.1016/j.jff.....
 
62.
Marono S., Loponte R., Lombardi P. et al., 2017. Productive performance and blood profiles of laying hens fed Hermetia illucens larvae meal as total replacement of soybean meal from 24 to 45 weeks of age. Poult. Sci. 96, 1783–1790, https://doi.org/10.3382/ps/pew....
 
63.
Matsue M., Mori Y., Nagase S., Sugiyama Y., Hirano R., et al.,2019. Measuring the antimicrobial activity of lauric acid against various bacteria in human gut microbiota using a new method. Cell Transplant. 28, 1528–1541, https://doi.org/10.1177/096368....
 
64.
Maurer V., Holinger M., Amsler Z., Früh B., Wohlfahrt J., Stamer A., Leiber F., 2016. Replacement of soybean cake by Hermetia illucens meal in diets for layers. JIFF 2, 83–90, https://doi.org/10.3920/JIFF20....
 
65.
Middelkoop A., Kettunen H., Guan X., Vuorenmaa J., Tichelaar R., Gambino M., Rydal M.P., Molist F., 2024. Effect of dietary tall oil fatty acids and hydrolysed yeast in SNP2-positive and SNP2-negative piglets challenged with F4 enterotoxigenic Escherichia coli. Sci. Rep. 14, 2060, https://doi.org/10.1038/s41598....
 
66.
Mina G., Peira G., Bonadonna A., 2023. The potential future of insects in the European Food system: a systematic review based on the consumer point of view. Foods 12, 646, https://doi.org/10.3390/foods1....
 
67.
Miron L., Montevecchi G., Bruggeman G., Macavei L.I., Maistrello L., Antonelli A., Thomas M., 2023. Functional properties and essential amino acid composition of proteins extracted from black soldier fly larvae reared on canteen leftovers. IFSET 87, 103407, https://doi.org/10.1016/j.ifse....
 
68.
Mkwanazi M.V., Ncobela C.N., Kanengoni A.T., Chimonyo M., 2019. Effects of environmental enrichment on behaviour, physiology and performance of pigs — A review. Asian-Australas J Anim Sci. 321, 1–13, https://doi.org/10.5713/ajas.1....
 
69.
Mlček J., Adámková A., Adámek M., et al., 2021. Selected aspects of edible insect rearing and consumption–A review. Czech J. Food Sci. 39, 149–59, https://doi.org/10.17221/288/2....
 
70.
Montanari F., Pinto de Moura A., Cunha L.M. Production and Commercialization of Insects as Food and Feed. Identification of the Main Constraints in the European Union. Springer, 2021. https://doi.org/10.1007/978-3-....
 
71.
Nephale L.E., Moyo N.A.G., Rapatsa-Malatji M.M., 2024. Partial replacement of fish meal with soldier termite in juvenile Mozambique tilapia: Effects on growth performance, blood serum chemistry and histomorphology. J. Anim. Feed Sci. 33, 243–252, https://doi.org/10.22358/jafs/....
 
72.
Nitbani F.O., Tjitda P.J.P., Nitti F., Jumina J., Detha A.I.R., 2022. Antimicrobial properties of lauric acid and monolaurin in virgin coconut oil: a review. Chem. Bio. Eng. Rev. 9, https://doi.org/10.1002/cben.2....
 
73.
Nitharwal M., Kumawat S., Jatav H.S., Khan M.A., Chandra K., Attar S.K., Dhaka S.R., 2022. Edible insects a novel food processing industry: an overview. Agric. Rev. 45, 146–149, https://doi.org/10.18805/ag.R-....
 
74.
Nowakowski A.C., Miller A.C., Miller M.E., Xiao H., Wu X., 2021. Potential health benefits of edible insects. Crit. Rev. Food Sci. Nutr. 62, 3499–3508, https://doi.org/10.1080/104083....
 
75.
Onsongo V., Osuga I.M., Gachuiri C., Wachira A.M., 2018. Insects for income generation through animal feed: effect of dietary replacement of soybean and fish meal with black soldier fly meal on broiler growth and economic performance. J. Econom. Entomol. 111, 1966–1973, https://doi.org/10.1093/jee/to....
 
76.
Park S.I., Chang B.S., Yoe S.M., 2014. Detection of antimicrobial substances from larvae of the black solider fly, Hermetia illucens (Diptera: Stratiomydae). Entomol. Res. 44, 58–64, https://doi.org/10.1111/1748-5....
 
77.
Park S.I., Kim J.W., Yoe S.M., 2015. Purification and characterization of a novel antibacterial peptide from black solider fly (Hermetia illucens) larvae. Dev. Comp. Immunol. 52, 98–106, https://doi.org/10.1016/j.dci.....
 
78.
Pedrazzani C., Righi L., Vescovi F., Maistrello L., Caligiani A., 2024. Black soldier fly as a new chitin source: Extraction, purification and molecular/structural characterization. LWT 191, 115618, https://doi.org/10.1016/j.lwt.....
 
79.
Pexas G., Doherty B., Kyriazakis I., 2023. The future of protein sources in livestock feeds: implications for sustainability and food safety. Front. Sustain. Food Syst. 7, https://doi.org/10.3389/fsufs.....
 
80.
Phaengphairee P., Boontiam W., Wealleans A., Hong J., Kim Y.Y., 2023. Dietary supplementation with full-fat Hermetia illucens larvae and multi-probiotics, as a substitute for antibiotics, improves the growth performance, gut health, and antioxidative capacity of weaned pigs. BMC Vet Res. 19, 7, https://doi.org/10.1186/s12917....
 
81.
Ramos-Bueno R., Gonzalez Fernandez M.J., Sanchez-Muros M., Barroso F.G., 2016. Fatty acid profiles and cholesterol content of seven insect species assessed by several extraction systems. Eur. Food Res. Technol. 242, 1471–1477, https://doi.org/10.1007/s00217....
 
82.
Rauw W.M., Izquierdo E.G., Torres O., Gil M.G., de Miguel Beascoechea E., Rey Benayas J.M., Gomez-Raya L., 2023. Future farming: protein production for livestock feed in the EU. Sustain. Earth Rev. 6, 3, https://doi.org/10.1186/s42055....
 
83.
Ravindran V., Abdollahi M., Bootwalla S., 2014. Nutrient analysis, metabolizable energy, and digestible amino acids of soybean meals of different origins for broilers. Poult. Sci. 93, 2567–2577, https://doi.org/10.3382/ps.201....
 
84.
Rawski M., Mazurkiewicz J., Kierończyk B., Józefiak D., 2020. Black soldier fly full-fat larvae meal as an alternative to fish meal and fish oil in Siberian sturgeon nutrition: The effects on physical properties of the feed, animal growth performance, and feed acceptance and utilization. Animals 10, 2119, https://doi.org/10.3390/ani101....
 
85.
Regulation (EC) No 883/2017. European Parliament, Council of the European Union, 2017. Commission Regulation (EU) No No 883/2017 of 2017 amending Annexes I and IV to Regulation (EC) No. 999/2001 and Annexes X, XIV, and XV to Commission Regulation (EU) No. 142/2011, regards the provisions on processed animal protein, http://data.europa.eu/eli/dec/....
 
86.
Regulation (EU) 2017/1017 authorized live terrestrial invertebrates and dead terrestrial invertebrates with or without treatment as feed materials but not processed as described in Regulation (EC) No. 1069/2009, http://data.europa.eu/eli/reg/....
 
87.
Regulation (EC) No 999/2001. European Parliament, Council of the European Union, 2001. Commission Regulation (EU) No 999/2001 of 22 May 2001 laying down rules for the prevention, control and eradication of certain, transmissible spongiform encephalopathies, http://data.europa.eu/eli/reg/....
 
88.
Renna M., Rastello L., Veldkamp T., Toral P.G., Gonzalez-Ronquillo M., Jimenez L.E.R., Gasco L., 2023. Are insects a solution for feeding ruminants? Legislation, scientific evidence, and future challenges. Anim. Front. 13, 102–111, https://doi.org/10.1093/af/vfa....
 
89.
Regulation (EU) 2021/1372. European Parliament, Council of the European Union, 2021. Commission Regulation (EU) No 2021/1372. of 17 August 2021 amending Annex IV to Regulation (EC) No 999/2001 and Annexes X, XIV, and XV of Regulation (EU) No. 142/2011 of the as regards the prohibition to feed non-ruminant farmed animals, other than fur animals, with protein derived from animals, http://data.europa.eu/eli/reg/....
 
90.
Ricci A., Allende A., Bolton D. et al., 2018. Updated quantitative risk assessment (QRA) of the BSE risk posed by processed animal protein (PAP). EFSA J. 16, 5314, https://doi.org/10.2903/j.efsa....
 
91.
Rodrigues D.P., Ameixa O.M.C.C., Vázquez J.A., Calado R., 2022. improving the lipid profile of black soldier fly (Hermetia illucens) larvae for marine aquafeeds: current state of knowledge. Sustainability 14, 6472, https://doi.org/10.3390/su1411....
 
92.
Röös E., Bajzelj B., Smith P., Granett T., 2017. Protein futures for Western Europe: potential land use and climate impacts in 2050. Reg. Environ. Change 17, 367–377. https://doi.org/10.1007/s10113....
 
93.
Saadoun J.H., Montevecchi G., Zanasi L., Bortolini S., Macavei L.I., Masino F., Maistrello L., Antonelli A., 2020. Lipid profile and growth of black soldier flies (Hermetia illucens, Stratiomyidae) reared on by-products from different food chains. J. Sci. Food Agric. 100, 3648–3657, https://doi.org/10.1002/jsfa.1....
 
94.
Sadigov R., 2022. Rapid growth of the world population and its socioeconomic results. Sci. World J. 2022, 8110229, https://doi.org/10.1155/2022/8....
 
95.
Salliou N., 2023. Quitting livestock farming: transfarmation pathways and factors of change from post-livestock farmers’ accounts. Front. Sustain. Food Syst. 7, https://doi.org/10.3389/fsufs.....
 
96.
Salomone R., Saija G., Mondello G., Gianetto A., Fasulo S., Savastano D., 2017. Environmental impact of foods waste bioconversion by insects: Application of Life Cycle Assessment to process using Hermetia illucens. J. Clean. Prod. 140, 890–905, https://doi.org/10.1016/j.jcle....
 
97.
Schiavone A., Cullere M., De Marco M., Meneguz M., Biasato I., Bergagna S., Dezzutto D., Gai F., Dabbou S., Gasco L., 2017a. Partial or total replacement of soybean oil by black soldier fly larvae (Hermetia illucens L.) fat in broiler diets: Effect on growth performances, feed-choice, blood traits, carcass characteristics and meat quality. Ital. J. Anim. Sci. 16, 93–100, https://doi.org/10.1080/182805....
 
98.
Schiavone A., De Marco M., Martínez S., Dabbou S., Renna M., Madrid J., Hernandez F., Rotolo L., Costa P., Gai F., 2017b. Nutritional value of a partially defatted and a highly defatted black soldier fly larvae (Hermetia illucens L.) meal for broiler chickens: Apparent nutrient digestibility, apparent metabolizable energy and apparent ileal amino acid digestibility. J. Anim. Sci. Biotechnol. 8, 51, https://doi.org/10.1186/s40104....
 
99.
Schiavone A., Dabbou S., De Marco M. et al., 2018. Black soldier fly larva fat inclusion in finisher broiler chicken diet as an alternative fat source. Animal 12, 2032–2039, https://doi.org/10.1017/S17517....
 
100.
Secci G., Moniello G., Gasco L., Bovera F., Parisi G., 2018. Barbary partridge meat quality as affected by Hermetia illucens and Tenebrio molitor larva meals in feeds. Food Res. Int. 112, 291–298, https://doi.org/10.1016/j.food....
 
101.
Seyedalmoosavi M.M., Mielenz M., Görs S., Wolf P., Daş G., Metges C.C., 2022. Effects of increasing levels of whole Black Soldier Fly (Hermetia illucens) larvae in broiler rations on acceptance, nutrient and energy intakes and utilization, and growth performance of broilers. Poult Sci. 101, 102202, https://doi.org/10.1016/j.psj.....
 
102.
Shumo M., Osuga I.M., Khamis F.M., Tanga C.M., Fiaboe K.K., Subramanian S., Ekesi S., van Huis A., Borgemeister C., 2019. The nutritive value of black soldier fly larvae reared on common organic waste streams in Kenya. Sci. Rep. 9, 10110, https://doi.org/10.1038/s41598....
 
103.
Siddiqui S.A., Ristow B., Rahayu T. et al., 2022. Black soldier fly larvae (BSFL) and their affinity for organic waste processing. Waste Manag. 140, 1–13, https://doi.org/10.1016/j.wasm....
 
104.
Sogari G., Amato M., Biasato I., Chiesa S., Gasco L., 2019. The potential role of insects as feed: a multi-perspective review. Animals 9, 119, https://doi.org/10.3390/ani904....
 
105.
Sogari G., Bellezza Oddon S., Gasco L., van Huis A., Spranghers T., Mancini S., 2023. Review: Recent advances in insect-based feeds: from animal farming to the acceptance of consumers and stakeholders. Animal 17, 100904, https://doi.org/10.1016/j.anim....
 
106.
Spranghers T., Michiels J., Vrancx J., Ovyn A., Eechout M., De Clercq P., De Smet S., 2018. Gut antimicrobial effects and nutritional value of black soldier fly (Hermetia illucens L.) prepupae for weaned piglets. AFST 235, 33–42, https://doi.org/10.1016/j.anif....
 
107.
Spranghers T., Ottoboni M., Klootwijk C., Ovyn A., Deboosere S., de Meulenaer B., Michiels J., Eeckhout M., de Clercq P., de Smet S., 2017. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric., 97, 2594–2600, https://doi.org/10.1002/jsfa.8....
 
108.
Star L., Arsiwalla T., Molist F., Leushuis R., Dalim M., Paul A., 2020. Gradual provision of live black soldier fly (Hermetia illucens) larvae to older laying hens: effect on production performance, egg quality, feather condition and behavior. Animals 10, 216, https://doi.org/10.3390/ani100....
 
109.
Suryati T., Julaeha E., Farabi K., Ambarsari H., Hidayat T., 2023. Lauric acid from the black soldier fly (Hermetia illucens) and its potential applications. Sustainability 15, 10383, https://doi.org/10.3390/su1513....
 
110.
Szczepanik K., Furgał-Dierżuk I., Gala Ł., Świątkiewicz M., 2022. Effects of Hermetia illucens larvae meal and astaxanthin as feed additives on health and production indices in weaned pigs. Animals 13, 163, https://doi.org/10.3390/ani130....
 
111.
Tabata E., Kashimura A., Wakita S., Ohno M., Sakaguchi M., Sugahara Y., Kino Y., Matoska V., Bauer P.O., Oyama F., 2017. Gastric and intestinal proteases resistance of chicken acidic chitinase nominates chitin-containing organisms for alternative whole edible diets for poultry. Sci. Rep. 7, 6662, https://doi.org/10.1038/s41598....
 
112.
Tahamanti F.M., Ivarsson E., Wiklicky V., Lalander C., Wall H., Rodenburg T.B., Tuyttens F.A.M., Hernandez C.E., 2021. Feeding live Black Soldier Fly larvae (Hermetia illucens) to laying hens: effects on feed consumption, hen health, hen behavior, and egg quality. Poult. Sci. 100, 101400, https://doi.org/10.1016/j.psj.....
 
113.
Tan X., Yang H.S., Wang M., Yi Z.F., Ji F.J., Li J.Z., Yin Y.L., 2020. Amino acid digestibility in housefly and black soldier fly prepupae by growing pigs. AFST 263, 114446, https://doi.org/10.1016/j.anif....
 
114.
Thornton P., Gurney-Smith H., Wollenberg E., 2023. Alternative sources of protein for food and feed. Curr. Opin. Env. Sust. 62, 101277, https://doi.org/10.1016/j.cosu....
 
115.
Tirtawijaya G., Lee J., Bashir K.M.I., Lee H., Choi J., 2024. Evaluating the efficiency of black soldier fly (Hermetia illucens) larvae in converting mackerel head waste into valuable resources. Animals 2024, 14, 1332; https://doi.org/10.3390/ani140....
 
116.
Tolleson D., Meiman P., 2015. Global effects of changing land-use on animal agriculture. Animal Front. 5, 14–23, https://doi.org/10.2527/af.201....
 
117.
Tran G., Heuzé V., Makkar H.P.S., 2015. Insects in fish diets. Anim. Front. 5, 37–44, https://doi.org/10.2527/af.201....
 
118.
Tschirner M., Simon A., 2015. Influence of different growing substrates and processing on the nutrient composition of black soldier fly larvae destined for animal feed. JIFF 1, 249–259, https://doi.org/10.3920/JIFF20....
 
119.
Truzzi C., Giorgini E., Annibaldi A. et al., 2020. Fatty acids profile of black soldier fly (Hermetia illucens): Influence of feeding substrate based on coffee-waste silverskin enriched with microalgae. AFST 259, 114309, https://doi.org/10.1016/j.anif....
 
120.
Tyshko N.V., Zhminchenko V.M., Nikitin N.S., Trebukh M.D., Shestakova S.I., Pashorina V.A., Sadykova E.O., 2021. The comprehensive studies of Hermetia illucens larvae protein’s biological value. Probl. Nutr. 90, 49–58, https://doi.org/10.33029/0042-....
 
121.
Ushakova N.A., Brodskii E.S., Kovalenko A.A., Bastrakov A.I., Kozlova A.A., Pavlov D.S., 2016. Characteristics of lipid fractions of larvae of the black solider fly Hermetia illucens. Dokl. Biochem. Biophys. 468, 209–212, https://doi.org/10.1134/S16076....
 
122.
Wang Y.S., Shelomi M., 2017. Review of black soldier fly (Hermetia illucens) as animal feed and human food. Foods 6, 91, https://doi.org/10.3390/foods6....
 
123.
Woodgate S.L., Wilkinson R.G., 2021. The role of rendering in relation to the bovine spongiform encephalopathy epidemic, the development of EU animal by-product legislation and the reintroduction of rendered products into animal feeds. Ann. Appl. Biol. 178, https://doi.org/10.1111/aab.12....
 
124.
Van Heugten E., Martinez G., McComb A., Koustos L., 2022. Improvements in performance of nursery pigs provided with supplemental oil derived from black soldier fly (Hermetia illucens) larvae. Animals 12, 3251, https://doi.org/10.1093/jas/sk....
 
125.
Van Huis A., Gasco L., 2023. Insects as feed for livestock production. Science 379, 138–139, https://doi.org/10.1126/scienc....
 
126.
Van Huis A., Van Itterbeeck J., Klunder H., Mertens E., Halloran A., Muir G., Vantomme P., 2013. Edible insects: Future prospects for food and feed security. FAO. FAO Forestry Paper. Rome.
 
127.
Xia J., Ge C., Yao H., 2021. Antimicrobial peptides from black soldier fly (Hermetia illucens) as potential antimicrobial factors representing an alternative to antibiotics in livestock farming. Animals 11, 1937, https://doi.org/10.3390/ani110....
 
128.
Yan Y., Zhang J., Chen X., Wang Z., 2023. Effects of black soldier fly larvae (Hermetia illucens larvae) meal on the production performance and cecal microbiota of hens. Vet Sci. 10, 364, https://doi.org/10.3390/vetsci....
 
129.
Yildirim-Aksoy M., Eljack R., Beck B.H., 2020. Nutritional value of frass from black soldier fly larvae, Hermetia illucens, in a channel catfish, Ictalurus punctatus, diet. Aquac. Nutr. 26, 812–819, https://doi.org/10.1111/anu.13....
 
130.
Yu M., Li Z., Chen W., Rong T., Wang G., Ma X., 2019. Hermetia illucens larvae as a potential dietary protein source altered the microbiota and modulated mucosal immune status in the colon of finishing pigs. J. Anim. Sci. Biotechnol. 10, 50, https://doi.org/10.1186/s40104....
 
131.
Zamri M.Z.A., Ramiah S.K., Jamein E.S., Zulkifli I., Lokman I.H., Amirul F.M.A., Fadzlin S.A.A., Mohd Zamri S., Jayanegara A., Hassim H.A., 2023. Potential use of black soldier fly, Hermetia illucens larvae in chicken feed as a protein replacer: a review. J. Anim. Feed Sci. 32, 341–353, https://doi.org/10.22358/jafs/....
 
132.
Zeng X., Yang Y., Wang J., Wang Z., Li J., Yin Y., Yang H., 2022. Dietary butyrate, lauric acid and stearic acid improve gut morphology and epithelial cell turnover in weaned piglets. Anim. Nutr. 11, 276–282, https://doi.org/10.1016/j.anin....
 
133.
Zulkifili N.F.N.M., Seok-Kian A.Y., Seng L.L., Mustafa S., Kim Y.S., Shapawi R., 2022. Nutritional value of black soldier fly (Hermetia illucens) larvae processed by different methods. PLoS One 17, e0263924, https://doi.org/10.1371/journa....
 
134.
Zhang J., Li B.J., Peng Y., Gao X., Song Q., et al., 2022. Structural and functional characterizations and heterogenous expression of the antimicrobial peptides, Hidefensins, from black soldier fly, Hermetia illucens (L.). Protein Expr. Purif. 192, 106032, https://doi.org/10.1016/j.pep.....
 
135.
Zhu M., Liu M., Yuan B., Jin X., Zhang X., Xie G., Wang Z., Lv Y., Wang W., Huang Y., 2022. Growth performance and meat quality of growing pigs fed with black soldier fly (Hermetia illucens) larvae as alternative protein source. Processes 10, 1498, https://doi.org/10.3390/pr1008....
 
ISSN:1230-1388
Journals System - logo
Scroll to top