ORIGINAL PAPER
Effect of dietary plant tannin supplementation
on rumen fermentation and enteric methane production
More details
Hide details
1
Mendel University in Brno, Faculty of AgriSciences, Department of Animal Nutrition and Forage Production, Brno 613 00, Czech Republic
2
Agrovyzkum Rapotin Ltd., Department of Feed Production, Animal Nutrition, Breeding and Reproduction,
Vikyrovice 788 13, Czech Republic
3
University of Veterinary Sciences Brno, Faculty of Veterinary Medicine, Large Animal Clinical Laboratory,
Brno 612 42, Czech Republic
These authors had equal contribution to this work
Publication date: 2025-02-04
Corresponding author
S. Malyugina
Mendel University in Brno, Faculty of Agrisciences, Department of Animal Nutrition and Forage Production, Zemedelska 1665, 613 00 Brno, Czech Republic
KEYWORDS
TOPICS
ABSTRACT
Although protozoa play a crucial role in ruminal microbial networks,
their contribution to rumen fermentation and methane emissions remains
controversial. Tannins, polyphenolic compounds derived from various plants,
can affect microbial activity, fermentation processes, protein degradation,
and methane production in the rumen. This study investigated the impact of
dietary supplementation with chestnut, quebracho, and seaweed tannins on
rumen fermentation parameters, protozoan populations, and enteric methane
production. Rumen fluid (RF) samples were collected from four cannulated
Simmental cows assigned to four dietary treatments: a control diet (0TAN) and
three tannin-enriched diets: 150 g/day (150TAN), 200 g/day (200TAN), and 250
g/day (250TAN) in a 4 × 4 Latin-square design. The basal diet contained 64.3%
meadow hay, 13.1% grass silage, 9% maize silage, 11.5% cereal concentrate,
and 0.7% mineral concentrate. Most rumen fermentation parameters, including
pH, total volatile fatty acids, acetate, propionate, acetate:propionate ratio, and
isovalerate, were significantly influenced (P < 0.005) by the tannin-enriched
diet, except for ammonia and butyrate concentrations. Tannin supplementation
at 200 g/day, the concentrations of acetate, isovalerate, and the acetate ratio
significantly increased (P < 0.001), whereas propionate production decreased.
Significant effects (P < 0.001) were also observed with respect to the total
number of protozoa and the relative abundance of protozoan genera. These
findings suggest that dietary tannins modulate protozoan composition and the
rumen microbial community, demonstrating antimethanogenic potential. The
results confirm that tannins suppress rumen methanogenesis by reducing the
size of protozoan population and enteric methane production.
ACKNOWLEDGEMENTS
This study was supported by the Ministry of Agriculture of the Czech Republic (institutional support MZE-RO1224) and the Technology Agency of Czech Republic (Grant No. SS06020190).
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
REFERENCES (65)
1.
Abdalla A.L., Godoy P.B., Longo C., Araujo Neto J.C., Peçanha M.C., Bueno I.C.D.S., Vitti D.M.S.S., Sallam S.M.A., 2007. Methane emission, protozoa and methanogens counts in sheep fed coconut oil or a Brazilian tannin-rich plant (Mimosa caesalpineaefolia). Microb. Ecol. Health Dis. 19, 33.
2.
Animut G., Puchala R., Goetsch A.L., Patra A.K., Sahlu T., Varel V.H., Wells J., 2008. Methane emission by goats consuming different sources of condensed tannins. Anim. Feed Sci. Technol. 144, 228–241,
https://doi.org/10.1016/j.anif....
3.
ANKOM, 2018. ANKOM Gas production system operator’s manual.
4.
Baraka T.A., 2012. Comparative studies of rumen pH, total protozoa count, generic and species composition of ciliates in camel, buffalo, cattle, sheep and goat in Egypt. J. Am. Sci. 8, 448–462.
5.
Beauchemin K.A., McGinn S.M., Martinez T.F., McAllister T.A., 2007. Use of condensed tannin extract from quebracho trees to reduce methane emissions from cattle. J. Anim. Sci. 85, 1990–1996,
https://doi.org/10.2527/jas.20....
6.
Belanche A., de la Fuente G., Newbold C.J., 2014. Study of methanogen communities associated with different rumen protozoal populations. FEMS Microbiol. Ecol. 90, 663–677,
https://doi.org/10.1111/1574-6....
7.
Benchaar C., Chaves A.V., Fraser G.R., Beauchemin K.A., McAllister T.A., 2007. Effects of essential oils and their components on in vitro rumen microbial fermentation. Can. J. Anim. Sci. 87, 413–419,
https://doi.org/10.4141/CJAS07....
8.
Benchaar C., McAllister T.A., Chouinard P.Y., 2008. Digestion, ruminal fermentation, ciliate protozoal populations, and milk production from dairy cows fed cinnamaldehyde, quebracho condensed tannin, or Yucca schidigera saponin extracts. J. Dairy Sci. 91, 4765–4777,
https://doi.org/10.3168/jds.20....
9.
Besharati M., Taghizadeh A., 2009. Evaluation of dried grape by-product as a tanniniferous tropical feedstuff. Anim. Feed Sci. Technol. 152, 198–203,
https://doi.org/10.1016/j.anif....
10.
Bhatta R., Uyeno Y., Tajima K., Takenaka A., Yabumoto Y., Nonaka I., Enishi O., Kurihara M., 2009. Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. J. Dairy Sci. 92, 5512–5522,
https://doi.org/10.3168/jds.20....
11.
Brooker J.D., O’Donovan L., Skene I., Sellick G., 1999. Mechanisms of tannin resistance and detoxification in the rumen. ACIAR PROC, pp. 117–122.
12.
Chen G., Russell J.B., Sniffen, C.J., 1987. A procedure for measuring peptides in rumen fluid and evidence that peptide uptake can be a rate-limiting step in ruminal protein degradation. J. Dairy Sci. 70, 1211–1219,
https://doi.org/10.3168/jds.S0....
14.
Dai X., Kalscheur K.F., Huhtanen P., Faciola A.P., 2022. Effects of ruminal protozoa on methane emissions in ruminants-A meta-analysis. J. Dairy Sci. 105, 7482–7491,
https://doi.org/10.3168/jds.20....
15.
Dehority B.A. (Editor), 2004. Rumen Microbiology. Nottingham University Press. Nottingham (UK).
16.
Dehority B.A. (Editor), 2018. Laboratory Manual for Classification and Morphology of Rumen Ciliate Protozoa. CRC Press. Boca Raton, FL (USA),
https://doi.org/10.1201/978135....
18.
Ellis J.E., Lindmark D.G., Williams A.G., Lloyd D., 1994. Polypeptides of hydrogenosome-enriched fractions from rumen ciliate protozoa and trichomonads: immunological studies. FEMS Microbiol. Lett. 117, 211–216,
https://doi.org/10.1111/j.1574....
19.
Fenchel T., Finlay B.J., 2006. The diversity of microbes: resurgence of the phenotype. Philosoph. Transact. Royal Soc. B: Biol. Sci. 361, 1965–1973,
https://doi.org/10.1098/rstb.2....
20.
Filípek J., Dvořák R., 2009. Determination of the volatile fatty acid content in the rumen liquid: comparison of gas chromatography and capillary isotachophoresis. Acta Vet. Brno 78, 627–633,
https://doi.org/10.2754/avb200....
21.
Finlay B.J., Esteban G., Clarke K.J., Williams A.G., Embley T.M., Hirt R.P., 1994. Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol. Lett. 117, 157–161,
https://doi.org/10.1111/j.1574....
22.
Hess H.D., Monsalve L.M., Lascano C.E., Carulla J.E., Diaz T.E., Kreuzer M., 2003. Supplementation of a tropical grass diet with forage legumes and Sapindus saponaria fruits: effects on in vitro ruminal nitrogen turnover and methanogenesis. Aust. J. Agric. Res. 54, 703–713,
https://doi.org/10.1071/AR0224....
23.
Irbis C., Ushida K., 2004. Detection of methanogens and proteobacteria from a single cell of rumen ciliate protozoa. J. Gen. Appl. Microbiol. 50, 203–212,
https://doi.org/10.2323/jgam.5....
24.
ISO (International Organization for Standardization), 1997. Native Starch Determination of Sarch Content - Ewers Polarimetric Method. ISO Standard 10520. Geneva (Switzerland).
25.
Kamra D.N., Patra A.K., Chatterjee P.N., Kumar R., Agarwal N., Chaudhary L.C., 2008. Effect of plant extracts on methanogenesis and microbial profile of the rumen of buffalo: a brief overview. Aust. J. Exp. Agric. 48, 175–178,
https://doi.org/10.1071/EA0726....
26.
Kaya A., Başer A., Kaya A., Selçuk B., Cengiz T., 2022. Determination of the antimethanogenic properties of sumac leaves (Rhus coriaria L.) subsitution at different ratios instead of corn silage in sheep rations by in vitro gas production method. Turkish J. Agric. Food Sci. Technol. 10, 309–312,
https://doi.org/10.24925/turja....
27.
Kittelmann S., Devente S.R., Kirk M.R., Seedorf H., Dehority B.A., Janssen P.H., 2015. Phylogeny of intestinal ciliates, including Charonina ventriculi, and comparison of microscopy and 18S rRNA gene pyrosequencing for rumen ciliate community structure analysis. Appl. Environ. Microbiol. 81, 2433–2444,
https://doi.org/10.1128/AEM.03....
28.
Kittelmann S., Seedorf H., Walters W.A., Clemente J.C., Knight R., Gordon J.I., Janssen P.H., 2013. Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities. PloS One 8, e47879,
https://doi.org/10.1371/journa....
29.
Kumar R., Vaithiyanathan S., 1990. Occurrence, nutritional significance and effect on animal productivity of tannins in tree leaves. Anim. Feed Sci. Technol. 30, 21–38,
https://doi.org/10.1016/0377-8....
30.
Lima P.R., Apdini T., Freire A.S. et al., 2019. Dietary supplementation with tannin and soybean oil on intake, digestibility, feeding behavior, ruminal protozoa and methane emission in sheep. Anim. Feed Sci. Technol. 249, 10–17,
https://doi.org/10.1016/j.anif....
31.
Majewska M.P., Miltko R., Bełżecki G., Kędzierska A., Kowalik B., 2023. Rumen protozoa population and carbohydrate-digesting enzymes in sheep fed a diet supplemented with hydrolysable tannins. Ann. Anim. Sci. 23, 561–570,
https://doi.org/10.2478/aoas-2....
32.
Makkar H.P.S., Blümmel M., Becker K., 1997. In vitro rumen apparent and true digestibilities of tannin-rich forages. Anim. Feed Sci. Technol. 67, 245–251,
https://doi.org/10.1016/S0377-....
33.
McSweeney C.S., Palmer B., McNeill D.M., Krause D.O., 2001. Microbial interactions with tannins: nutritional consequences for ruminants. Anim. Feed Sci. Technol. 91, 83–93,
https://doi.org/10.1016/S0377-....
34.
Min B.R., Pinchak W.E., Anderson R.C., Fulford J.D., Puchala R., 2006. Effects of condensed tannins supplementation level on weight gain and in vitro and in vivo bloat precursors in steers grazing winter wheat. J. Anim. Sci. 84, 2546–2554,
https://doi.org/10.2527/jas.20....
36.
Morgavi D.P., Martin C., Jouany J.P., Ranilla M.J., 2012. Rumen protozoa and methanogenesis: not a simple cause-effect relationship. Br. J. Nutr. 107, 388–397,
https://doi.org/10.1017/S00071....
37.
Moss A.R., Jouany J.P., Newbold J., 2000. Methane production by ruminants: its contribution to global warming. Ann. Zootech. 49, 231–253,
https://doi.org/10.1051/animre....
39.
NRC (National Research Council), 2016. Nutrient Requirements of Beef Cattle. Eighth Revised Edition. The National Academies Press. Washington, DC (USA),
https://doi.org/10.17226/19014.
40.
Newbold C.J., de la Fuente G., Belanche A., Ramos-Morales E., McEwan N.R., 2015. The role of ciliate protozoa in the rumen. Front. Microbiol. 6, 1313,
https://doi.org/10.3389/fmicb.....
41.
Odenyo A.A., McSweeney C.S., Palmer B., Negassa D., Osuji P.O., 1999. In vitro screening of rumen fluid samples from indigenous African ruminants provides evidence for rumen fluid with superior capacities to digest tannin-rich fodders. Aust. J. Agric. Res. 50, 1147–1157,
https://doi.org/10.1071/AR9811....
42.
Ogimoto K., Imai S., 1981. Atlas of rumen microbiology. Japan Scientific Societies Press. Sendai (Japan).
43.
Osakwe I.I., Steingass H., Drochner W., 2004. Effect of dried Elaeis guineense supplementation on nitrogen and energy partitioning of WAD sheep fed a basal hay diet. Anim. Feed Sci. Technol. 117, 75–83,
https://doi.org/10.1016/j.anif....
44.
Patra A.K., Saxena J., 2009a. The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production. Nutr. Res. Rev. 22, 204–219,
https://doi.org/10.1017/S09544....
45.
Patra A.K., Saxena J., 2009b. Dietary phytochemicals as rumen modifiers: a review of the effects on microbial populations. Anton. Leeuw. 96, 363–375,
https://doi.org/10.1007/s10482....
46.
Patra A.K., Yu Z., 2012. Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Appl. Envir. Microbiol. 78, 4271–4280,
https://doi.org/10.1128/AEM.00....
47.
Pell A.N., Woolston T.K., Nelson K.E., Schofield P., 1999. Tannins: biological activity and bacterial tolerance. Conference paper. ISBN (Hardback): 1-86320-276-5.
48.
Piluzza G., Sulas L., Bullitta S., 2014. Tannins in forage plants and their role in animal husbandry and environmental sustainability: a review. Grass Forage Sci. 69, 32–48,
https://doi.org/10.1111/gfs.12....
49.
Reyes A.A., 2019. An in vitro system evaluation of the rumen microbiome and rumen fermentation characteristics as a result of differing feed additives (Doctoral dissertation, Colorado State University). Fort Collins, CO (USA).
50.
Sadarman S., Ridla M., Nahrowi N., Ridwan R., Harahap R.P., Nurfitriani R.A., Jayanegara A., 2019. Kualitas fisik silase ampas kecap dengan aditif tanin akasia (Acacia mangium Wild.) dan aditif lainnya (in Indonesian). J. Peternakan 16, 66–75,
https://doi.org/10.24014/jupet....
51.
Salami S.A., Valenti B., Bella M., O’Grady M.N., Luciano G., Kerry J.P., Jones E., Priolo A., Newbold C.J., 2018. Characterisation of the ruminal fermentation and microbiome in lambs supplemented with hydrolysable and condensed tannins. FEMS Microbiol. Ecol. 94, fiy061,
https://doi.org/10.1093/femsec....
52.
Sarnataro C., Spanghero M., Lavrenčič A., 2020. Supplementation of diets with tannins from Chestnut wood or an extract from Stevia rebaudiana Bertoni and effects on in vitro rumen fermentation, protozoa count and methane production. J. Anim. Physiol. Anim. Nutr. 104, 1310–1316,
https://doi.org/10.1111/jpn.13....
53.
Seymour W.M., Campbell D.R., Johnson Z.B., 2005. Relationships between rumen volatile fatty acid concentrations and milk production in dairy cows: a literature study. Anim. Feed Sci. Technol. 119, 155–169,
https://doi.org/10.1016/j.anif....
54.
Szumacher-Strabel M., Cieślak A., 2012. Dietary possibilities to mitigate rumen methane and ammonia production. In: G. Liu (Editor). Greenhouse Gases - Capturing, Utilization and Reduction. IntechOpen Inc. London (UK),
https://doi.org/10.5772/32105.
55.
Tan H.Y., Sieo C.C., Abdullah N., Liang J.B., Huang X.D., Ho Y.W., 2011. Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Anim. Feed Sci. Technol. 169, 185–193,
https://doi.org/10.1016/j.anif....
56.
Tavendale M.H., Meagher L.P., Pacheco D., Walker N., Attwood G.T., Sivakumaran S., 2005. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim. Feed Sci. Technol. 123, 403–419,
https://doi.org/10.1016/j.anif....
57.
Tunkala B.Z., DiGiacomo K., Hess P.S.A., Dunshea F.R., Leury B.J., 2022. Rumen fluid preservation for in vitro gas production systems. Anim. Feed Sci. Technol. 292, 115405,
https://doi.org/10.1016/j.anif....
58.
Tymensen L., Barkley C., McAllister T.A., 2012. Relative diversity and community structure analysis of rumen protozoa according to T-RFLP and microscopic methods. J. Microbiol. Methods 88, 1–6,
https://doi.org/10.1016/j.mime....
59.
Ungerfeld E.M., Rust S.R., Burnett R., 2003. Use of some novel alternative electron sinks to inhibit ruminal methanogenesis. Reprod. Nutr. Dev. 43, 189–202,
https://doi.org/10.1051/rnd:20....
60.
Van Soest P.V., Robertson J.B., Lewis B.A., 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597,
https://doi.org/10.3168/jds.S0....
61.
Vasta V., Yáñez-Ruiz D.R., Mele M., Serra A., Luciano G., Lanza M., Priolo A., 2010. Bacterial and protozoal communities and fatty acid profile in the rumen of sheep fed a diet containing added tannins. Appl. Environ. Microbiol. 76, 2549–2555,
https://doi.org/10.1128/AEM.02....
62.
Waghorn G.C., Shelton I.D., 1997. Effect of condensed tannins in Lotus corniculatus on the nutritive value of pasture for sheep. J. Agric. Sci. 128, 365–372,
https://doi.org/10.1017/S00218....
64.
Williams A.G., Coleman G.S., 1992. Role of protozoa in the rumen. The Rumen Protozoa. Brock/Springer Series in Contemporary Bioscience. Springer. New York, NY (USA),
https://doi.org/10.1007/978-1-....
65.
Zhou M.I., Hernandez-Sanabria E., Guan L.L., 2009. Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies. Appl. Environ. Microbiol. 75, 6524–6533,
https://doi.org/10.1128/AEM.02....