ORIGINAL PAPER
 
KEYWORDS
TOPICS
ABSTRACT
This study investigated the impact of precursor supplementation and incubation time on the quality of palm stem pith silage (nutrient content, in vitro digestibility, and rumen fermentability). A factorial complete randomised design was applied, and the first factor included precursor supplements (D1 – empty bunch ash filtrate, D2 – chicken faeces + urea, D3 – effective microorganism + molasses + urea), while the second factor was incubation periods (B1 – 7 days, B2 – 14 days, B3 – 21 days). Each treatment was replicated 3 times, resulting in 27 experimental units. The results revealed significant main effects of precursor supplementation, incubation time and their interaction on various silage parameters. In particular, a clear interaction (P < 0.01) was observed between precursor supplementation and duration of incubation, indicating significant synergistic effects on nutrient content (dry matter, organic matter, crude protein, crude fibre, extract ether and nitrogen-free extract), digestibility (organic matter and dry matter) and rumen fermentability (NH3 concentration). Specifically, the combination of effective microorganism + molasses + urea supplementation, with a 14-day incubation period, emerged as the most effective strategy for enhancing silage quality. These findings highlight the crucial role of considering treatment interaction factors in optimising silage production processes.
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
REFERENCES (85)
1.
Adli A., Febrina D., Zumarni Z., Khairi F., Sadarman S., 2022. The effect of differences of adhesive and filtrates sources on fiber fraction and physical quality of complete ration wafer. J. Agripet 22, 88–96, https://doi.org/10.17969/agrip....
 
2.
Ahmad F., Tauqir N.A., Tahir N., Asghar A., Mujahid N., Abbas K., Hannan A., Ahmad N., Bilal R.M., 2018. Performance evaluation of corn and corn stover silages with different feed additives in growing sahiwal calves. Int. J. Sci. Eng. Res. 9, 2269–2282, https://www.ijser.org/research....
 
3.
Al-Arif M.A., Suwanti L.T., Estoepangestie A.S., Lamid M., 2017. The nutrients contents, dry matter digestibility, organic matter digestibility, total digestible nutrient, and NH3 rumen production of three kinds of cattle feeding models. KnE Life Sci. 3, 338–343, https://doi.org/10.18502/kls.v....
 
4.
Amanullah S.M., Kim D.H., Lee H.J., Joo Y.H., Kim S.B., Kim S.C., 2014. Effects of microbial additives on chemical composition and fermentation characteristics of barley silage. Asian-Australas. J. Anim. Sci. 27, 511–517, https://doi.org/10.5713/ajas.2....
 
5.
Ameen S.A., Abid I.S., 2019. Effect of substitution of urea with different type and levels of ruminant manure on nutritive value of rice straw silage. Al-Qadisiyah J. Agric. Sci. 9, 206–214, https://doi.org/10.33794/qjas.....
 
6.
Aschenbach J.R., Penner G.B., Stumpff F., Gäbel G., 2011. Ruminant nutrition symposium: Role of fermentation acid absorption in the regulation of ruminal pH. J. Anim. Sci. 89, 1092–1107, https://doi.org/10.2527/jas.20....
 
7.
Bach A., Calsamiglia S., Stern M.D., 2005. Nitrogen metabolism in the rumen. J. Dairy Sci. 88, E9–E21, https://doi.org/10.3168/jds.S0....
 
8.
Baharin K.W., Zakaria S., Ellis A. V., Talip N., Kaco H., Gan S., Zailan F.D., Ain Syed Hashim S.N., 2018. Factors affecting cellulose dissolution of oil palm empty fruit bunch and kenaf pulp in NaOH/urea solvent. Sains Malaysiana 47, 377–386, https://doi.org/10.17576/jsm-2....
 
9.
Bakar E.S., Sahri M.H., H’ng P.S., 2017. Anatomical Characteristics and Utilization of Oil Palm Wood. In: T. Nobuchi, M.H. Sahri (Editors). The Formation of Wood in Tropical Forest Tress: A Challenge from the Perspective of Functional Wood Anatomy. UPM Press. (Malaysia), 1–17.
 
10.
Barer M.R., 2012. Bacterial growth, physiology and death. Medical Microbiology. 18th Ed. Elsevier Ltd., https://doi.org/10.1016/B978-0....
 
11.
Bhatia S.K., Yang Y.H., 2017. Microbial production of volatile fatty acids: current status and future perspectives. Rev. Environ. Sci. Biotechnol. 16, 327–345, https://doi.org/10.1007/s11157....
 
12.
Bi Y., Zeng S., Zhang R., Diao Q., Tu Y., 2018. Effects of dietary energy levels on rumen bacterial community composition in Holstein heifers under the same forage to concentrate ratio condition. BMC Microbiol. 18, 69, https://doi.org/10.1186/s12866....
 
13.
Cantarella H., Otto R., Soares J.R., Silva A.G. de B., 2018. Agronomic efficiency of NBPT as a urease inhibitor: A review. J. Adv. Res. 13, 19–27, https://doi.org/10.1016/j.jare....
 
14.
Chuchai S., Bunsan P., Khongpradit A., Sawanon S., 2023. Chemical composition, in vitro gas production and in sacco degradation of oil palm tree pith silages (in Thai). King Mongkut’s Agric. 41, 242–249, https://doi.org/10.55003/kmaj.....
 
15.
Darwish G.A.M.A., Bakr A.A., Abdallah M.M.F., 2012. Nutritional value upgrading of maize stalk by using Pleurotus ostreatus and Saccharomyces cerevisiae in solid state fermentation. Ann. Agric. Sci. 57, 47–51, https://doi.org/10.1016/j.aoas....
 
16.
Desta D.T., Kelikay G.N., Zekwos M., Eshete M., Reda H.H., Alemayehu F.R., Zula A.T., 2021. Influence of fermentation time on proximate composition and microbial loads of Enset, (Ensete ventricosum), sampled from two different agroecological districts. Food Sci. Nutr. 9, 5641–5647, https://doi.org/10.1002/fsn3.2....
 
17.
Detmann E., Paulino M.F., De Campos Valadares Filho S., Huhtanen P., 2014. Nutritional aspects applied to grazing cattle in the tropics: A review based on Brazilian results. Semin. Agrar. 35, 2829–2854, https://doi.org/10.5433/1679-0....
 
18.
Dolci P., Tabacco E., Cocolin L., Borreani G., 2011. Microbial dynamics during aerobic exposure of corn silage stored under oxygen barrier or polyethylene films. Appl. Environ. Microbiol. 77, 7499–7507, https://doi.org/10.1128/AEM.05....
 
19.
Dryden G.M.L., 2021. Fundamentals of Applied Animal Nutrition, https://doi.org/10.1079/978178....
 
20.
Edwards R.A., 1923. Animal nutrition. Nature 111, 651, https://doi.org/10.1038/111651....
 
21.
Eş I., Mousavi Khaneghah A., Barba F.J., Saraiva J.A., Sant’Ana A.S., Hashemi S.M.B., 2018. Recent advancements in lactic acid production - a review. Food Res. Int. 107, 763–770, https://doi.org/10.1016/j.food....
 
22.
Falade A.O., Nwodo U.U., Iweriebor B.C., Green E., Mabinya L.V., Okoh A.I., 2017. Lignin peroxidase functionalities and prospective applications. Microbiologyopen 6, 1–14, https://doi.org/10.1002/mbo3.3....
 
23.
Febrina D., Zam S.I., Febriyanti R., Zumarni Z., Juliantoni J., Fatah A., 2020. Nutritional content and characteristics of antimicrobial compounds from fermented oil palm fronds (Elaeis guineensis Jacq.). J. Trop. Life Sci. 10, 27–33, https://doi.org/10.11594/jtls.....
 
24.
Febrina D., Hardiyanto L.O., Febriyanti R., Qomariyah N., Wahyono T., Adli D.N., 2022. Evaluation of nutritional content and physical quality of oil palm frond silage with different of additive and fermentation length. J. Ilmu dan Teknol. Peternak. Trop. 9, 605–612, https://doi.org/10.33772/jitro....
 
25.
Franczuk J., Rosa R., Zaniewicz-Bajkowska A., Słonecka D., 2019. Effects of boron application and treatment with effective microorganisms on the growth, yield and some quality attributes of broccoli. J. Elem. 24, 1335–1348, https://doi.org/10.5601/jelem.....
 
26.
Gonçalves A.P., do Nascimento C.F.M., Ferreira F.A., Gomes R. da C., Manella M. de Q., Marino C.T., Demarchi J.J.A. de A., Rodrigues P.H.M., 2015. Slow-release urea in supplement fed to beef steers. Brazilian Arch. Biol. Technol. 58, 22–30, https://doi.org/10.1590/S1516-....
 
27.
Górski R., Kleiber T., 2010. Effect of effective microorganisms (EM) on nutrient contents in substrate and development and yielding of rose (Rosa × hybrida) and gerbera (Gerbera jamesonii). Ecol. Chem. Eng. S 17, 505–513, https://typeset.io/pdf/effect-....
 
28.
Gupta S., Cox S., Abu-Ghannam N., 2010. Process optimization for the development of a functional beverage based on lactic acid fermentation of oats. Biochem. Eng. J. 52, 199–204, https://doi.org/10.1016/j.bej.....
 
29.
Hall M.B., Mertens D.R., 2017. A 100-year review: Carbohydrates - characterization, digestion, and utilization. J. Dairy Sci. 100, 10078–10093, https://doi.org/10.3168/jds.20....
 
30.
Hartati E., Lestari G.A.Y., Kleden M.M., Jelantik I.G.N., Telupere F.M.S., 2022. Chemical quality of rumen fermentation and in vitro digestability of complete feed based on Sorgum-clitoria ternatea silage with additional concentrate contains ZnSO4 And Zn-Cu Isoleucinate. Int. J. Sci. Adv. 3, 161–166, https://doi.org/10.51542/ijsci....
 
31.
Hartutik., Sudarwati H., Putri F.A., Oktadela G.A., 2020. The effect of EM-4 on sugarcane top silage (Saccharum officinarum Linn) on nutritive value and in vitro nutrients digestibility. IOP Conf. Ser. Earth Environ. Sci. 478, 012055, https://doi.org/10.1088/1755-1....
 
32.
Hassanat F., Benchaar C., 2013. Assessment of the effect of condensed (acacia and quebracho) and hydrolysable (chestnut and valonea) tannins on rumen fermentation and methane production in vitro. J. Sci. Food Agric. 93, 332–339, https://doi.org/10.1002/jsfa.5....
 
33.
Jamarun N., Zain M., Arief Pazla R., 2017. Populations of rumen microbes and the in vitro digestibility of fermented oil palm fronds in combination with tithonia (Tithonia diversifolia) and elephant grass (Pennisetum purpureum). Pakistan J. Nutr. 17, 39–45, https://doi.org/10.3923/pjn.20....
 
34.
Jatkauskas J., Vrotniakienë V., 2009. Fermentation characteristics in the rumen of dairy cows fed whole-crop spring wheat silage inoculated with homolactic bacteria mixture. Anim. Husb. Sci. Artic. 54, 62–71, https://gi.lsmuni.lt/pages/dar....
 
35.
Jiang Y., McAdam E., Zhang Y., Heaven S., Banks C., Longhurst P., 2019. Ammonia inhibition and toxicity in anaerobic digestion: A critical review. J. Water Process Eng. 32, 100899, https://doi.org/10.1016/j.jwpe....
 
36.
Kaplan-Shabtai V., Indugu N., et al., 2021. Using structural equation modeling to understand interactions between bacterial and archaeal populations and volatile fatty acid proportions in the rumen. Front. Microbiol. 12, 1–14, https://doi.org/10.3389/fmicb.....
 
37.
Kargar S., Taasoli G., Akhlaghi A., Zamiri M.J., 2023. In vitro rumen fermentation pattern: insights from concentrate level and plant oil supplement. Arch. Anim. Breed. 66, 1–8, https://doi.org/10.5194/aab-66....
 
38.
Khattab I.M., Salem A.Z.M., Abdel-Wahed A.M., Kewan K.Z., 2013. Effects of urea supplementation on nutrient digestibility, nitrogen utilisation and rumen fermentation in sheep fed diets containing dates. Livest. Sci. 155, 223–229, https://doi.org/10.1016/j.livs....
 
39.
Khattab M.S.A., Kholif A.E., Abd El Tawab A.M., Shaaban M.M., Hadhoud F.I., El-Fouly H.A., Olafadehan O.A., 2020. Effect of replacement of antibiotics with thyme and celery seed mixture on the feed intake and digestion, ruminal fermentation, blood chemistry, and milk lactation of lactating Barki ewes. Food Funct. 11, 6889–6898, https://doi.org/10.1039/D0FO00....
 
40.
Kim D., Lee K.D., Choi C., 2021. Role of LAB in silage fermentation: Effect on nutritional quality and organic acid production — An overview. AIMS Agric. Food 6, 216–234, https://doi.org/10.3934/agrfoo....
 
41.
Krehbiel C.R., 2014. Invited review: Applied nutrition of ruminants: Fermentation and digestive physiology. Prof. Anim. Sci. 30, 129–139, https://doi.org/10.15232/S1080....
 
42.
Lazarus E.J. L., Lawa E.D.W. 2022. Effect of cooking time and urea level on dry matter loss, nitrogen fixation and digestibility of dry matter, organic matter in vitro in the combined products of ureapith Gewang (Corypha Utan Lamk.) starch. GSC Adv. Res. Rev. 12, 058–068, https://doi.org/10.30574/gscar....
 
43.
Li P., Sirviö J.A., Hong S., Ämmälä, A., Liimatainen H., 2019. Preparation of flame-retardant lignin-containing wood nanofibers using a high-consistency mechano-chemical pretreatment. Chem. Eng. J. 375, 122050, https://doi.org/10.1016/j.cej.....
 
44.
Loosli J.K., McDonald I.W., 1968. Nonprotein nitrogen in the nutrition of ruminants. FAO Agric. Stud. https://search.worldcat.org/ti....
 
45.
Lunsin R., Duanyai S., Pilajun R., Duanyai S., Sombatsri P., 2018. Effect of urea- and molasses-treated sugarcane bagasse on nutrient composition and in vitro rumen fermentation in dairy cows. Agric. Nat. Resour. 52, 622–627, https://doi.org/10.1016/j.anre....
 
46.
Mayulu H., 2014. The nutrient potency of palm oil plantation and mill’s by-product processed with amofer technology as ruminant feed. Int. J. Sci. Eng. 6, 112–116, https://doi.org/10.12777/ijse.....
 
47.
McDonald P., Edwards R.A., Greenhalgh J., Morgan C., Sinclair L., Wilkinson R., 2002. Animal Nutrition. 8th Edition. Pearson Ltd. (Singapore), https://eliasnutri.wordpress.c....
 
48.
Mertens D.R., Grant R.J., 2020. Digestibility and Intake. In: K.J. Moore, M. Collins, J. Nelson, D.D. Redfearn (Editors). Forages: The Science of Grassland Agriculture. 7th Ed. John Wiley & Sons Ltd. Published. Hoboken, NJ (USA), pp 609–631, https://doi.org/10.1002/978111....
 
49.
Mezzomo R., Paulino P.V.R., Detmann E., Valadares Filho S.C., Paulino M.F., Monnerat J.P.I.S., Duarte M.S., Silva L.H.P., Moura L.S., 2011. Influence of condensed tannin on intake, digestibility, and efficiency of protein utilization in beef steers fed high concentrate diet. Livest. Sci. 141, 1–11, https://doi.org/10.1016/j.livs....
 
50.
Millen D.D., De Beni Arrigoni M., Pacheco R.D.L. (Editors), 2016. Rumenology. Springer Nature. Berlin (Germany), https://doi.org/10.1007/978-3-....
 
51.
Mirwandono E., Sitepu M., Wahyuni T.H., Hasnudi., Ginting N., Siregar G.A.W., Sembiring I., 2018. Nutrition quality test of fermented waste vegetables by bioactivator local microorganisms (MOL) and effective microorganism (EM4). IOP Conf. Ser. Earth Environ. Sci. 122, 012127, https://doi.org/10.1088/1755-1....
 
52.
Nascimento Agarussi, M.C., Gomes Pereira, O., de Paula, R.A., da Silva, V.P., Santos Roseira, J.P., Fonseca e Silva, F., 2019. Novel lactic acid bacteria strains as inoculants on alfalfa silage fermentation. Sci. Rep. 9, 8007, https://doi.org/10.1038/s41598....
 
53.
Ni K., Wang F., Zhu B., Yang J., Zhou G., Pan Y., Tao, Y., Zhong J., 2017. Effects of lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage. Bioresour. Technol. 238, 706–715, https://doi.org/10.1016/j.bior....
 
54.
Nishino N., Hattori H., 2007. Resistance to aerobic deterioration of total mixed ration silage inoculated with and without homofermentative or heterofermentative lactic acid bacteria. J. Sci. Food Agric. 87, 2420–2426, https://doi.org/10.1002/jsfa.2....
 
55.
Noersidiq A., Marlida Y., Zain M., Kasim A., Agustin F., 2018a. The effect of bioprocess technology in oil palm trunk on chemical composition and in-vitro fermentation characteristics. Asian J. Microbiol. Biotechnol. Environ. Sci. 20, S102–S108, https://www.academia.edu/10566....
 
56.
Noersidiq A., Marlida Y., Zain M., Kasim A., Agustin F., Adzitey F., Huda N., 2018b. The roles of ammoniation, direct fed microbials (DFM) and cobalt (Co) in the creation of complete cattle feed based from oil palm trunk. J. Agrobiotech 9, 92–107, https://journal.unisza.edu.my/....
 
57.
Noersidiq A., Marlida Y., Zain M., Kasim A., Agustin F., Huda N., 2020. The effect of urea levels on in-vitro digestibility and rumen fermentation characteristic of ammoniated oil palm trunk. Int. J. Adv. Sci. Eng. Inf. Technol. 10, 1258–1262, https://doi.org/10.18517/ijase....
 
58.
Nudri N.A., Bachmann R.T., Ghani W.A.W.A.K., Sum D.N.K., Azni A.A., 2020. Characterization of oil palm trunk biocoal and its suitability for solid fuel applications. Biomass Convers. Biorefinery 10, 45–55, https://doi.org/10.1007/s13399....
 
59.
Olafadehan O.A., Adebayo O.F., 2016. Nutritional evaluation of ammoniated ensiled threshed sorghum top as a feed for goats. Trop. Anim. Health Prod. 48, 785–791, https://doi.org/10.1007/s11250....
 
60.
Panigrahi A., Sundaram M., Saranya C., Swain S., Dash R.R., Dayal J.S., 2019. Carbohydrate sources deferentially influence growth performances, microbial dynamics and immunomodulation in Pacific white shrimp (Litopenaeus vannamei) under biofloc system. Fish Shellfish Immunol. 86, 1207–1216, https://doi.org/10.1016/j.fsi.....
 
61.
Pazla R., Jamarun N., Agustin F., Zain M., Arief., Cahyani N.O., 2021a. In vitro nutrient digestibility, volatile fatty acids and gas production of fermented palm fronds combined with tithonia (Tithonia diversifolia) and elephant grass (Pennisetum Purpureum). IOP Conf. Ser. Earth Environ. Sci. 888, 012067, https://doi.org/10.1088/1755-1....
 
62.
Pazla R., Jamarun N., Arief., Elihasridas Yanti G., Putri E.M., 2023b. In vitro evaluation of feed quality of fermented Tithonia diversifolia with Lactobacillus bulgaricus and Persea americana miller leaves as forages for goat. Trop. Anim. Sci. J. 46, 43–54, https://doi.org/10.5398/tasj.2....
 
63.
Pazla R., Jamarun N., Zain M., Yanti G., Chandra R.H., 2021b. Quality evaluation of tithonia (Tithonia diversifolia) with fermentation using Lactobacillus plantarum and Aspergillus ficuum at different incubation times. Biodiversitas J. Biol. Divers. 22, 3936–3942, https://doi.org/10.13057/biodi....
 
64.
Phesatcha B., Phesatcha K., Viennaxay B., Thao N.T., Wanapat M., 2021. Feed intake and nutrient digestibility, rumen fermentation profiles, milk yield and compositions of lactating dairy cows supplemented by Flemingia macrophylla pellet. Trop. Anim. Sci. J. 44, 288–296, https://doi.org/10.5398/tasj.2....
 
65.
Phesatcha K., Wanapat M., 2016. Improvement of nutritive value and in vitro ruminal fermentation of Leucaena silage by molasses and urea supplementation. Asian Australas. J. Anim. Sci. 29, 1136–1144, https://doi.org/10.5713/ajas.1....
 
66.
Rahmatullah R., Hasnudi., Mirwandhono E., Patriani P., Ginting N., Siregar G.A.W., 2020. The effects of fermentation time and em4 dose on nutrient content of kepok’s peel as animal feed. J. Phys. Conf. Ser. 1542, 012030, https://doi.org/10.1088/1742-6....
 
67.
Salama S.M., Mariod A.A., 2022. Significance of african fermented foods in nutrition and food science. In: A.M.E. Sulieman, A.A. Mariod (Editors). African Fermented Food Products - New Trends. Springer Nature. Berlin (Germany), https://doi.org/10.1007/978-3-....
 
68.
Salleh K.M., Zakaria S., Sajab M.S., Gan S., Chia C.H., Jaafar S.N.S., Amran U.A., 2018. Chemically crosslinked hydrogel and its driving force towards superabsorbent behaviour. Int. J. Biol. Macromol. 118, 1422–1430, https://doi.org/10.1016/j.ijbi....
 
69.
Singh P., Sulaiman O., Hashim R., Peng L.C., Singh R.P., 2013. Evaluating biopulping as an alternative application on oil palm trunk using the white-rot fungus Trametes versicolor. Int. Biodeterior. Biodegrad. 82, 96–103, https://doi.org/10.1016/j.ibio....
 
70.
Skonberg D.I., Fader S., Perkins L.B., Perry J.J., 2021. Lactic acid fermentation in the development of a seaweed sauerkraut-style product: Microbiological, physicochemical, and sensory evaluation. J. Food Sci. 86, 334–342, https://doi.org/10.1111/1750-3....
 
71.
Soltan Y.A., Natel A.S., Araujo R.C., Morsy A.S., Abdalla A.L., 2018. Progressive adaptation of sheep to a microencapsulated blend of essential oils: Ruminal fermentation, methane emission, nutrient digestibility, and microbial protein synthesis. Anim. Feed Sci. Technol. 237, 8–18, https://doi.org/10.1016/j.anif....
 
72.
Sripo K., Phianmongkhol A., Wirjantoro T.I., 2016. Effect of inoculum levels and final pH values on the antioxidant properties of black glutinous rice solution fermented by Lactobacillus bulgaricus. Int. Food Res. J. 23, 2207–2213, http://ifrj.upm.edu.my/23%20(0....
 
73.
Tampoebolon B.I.M., Prasetiyono B., Mukodiningsih S., 2019. The effect of fermentation with different times of corn husk which has obtained ammoniation treatment in the production of VFA-NH3 by in vitro digestibility. IOP Conf. Ser. Earth Environ. Sci. 247, 012073, https://doi.org/10.1088/1755-1....
 
74.
Tilley J.M.A., Terry R.A., 1963. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 18, 104–111, https://doi.org/10.1111/j.1365....
 
75.
Vargas J.E., López-Ferreras L., Andrés S., Mateos I., Horst E.H., López S., 2023. Differential diet and pH effects on ruminal microbiota, fermentation pattern and fatty acid hydrogenation in RUSITEC continuous cultures. Fermentation 9, 320, https://doi.org/10.3390/fermen....
 
76.
Wahyono T., Sholikin M.M., Konca Y., Obitsu T., Sadarman S., Jayanegara A., 2022. Effects of urea supplementation on ruminal fermentation characteristics, nutrient intake, digestibility, and performance in sheep: A meta-analysis. Vet. World 15, 331–340, https://doi.org/10.14202/vetwo....
 
77.
Wang C., He L., Xing Y., Zhou W., Yang F., Chen X., Zhang Q., 2019a. Effects of mixing Neolamarckia cadamba leaves on fermentation quality, microbial community of high moisture alfalfa and stylo silage. Microb. Biotechnol. 12, 869–878, https://doi.org/10.1111/1751-7....
 
78.
Wang Y., He L., Xing Y., Zheng Y., Zhou W., Pian R., Yang F., Chen X., Zhang Q., 2019b. Dynamics of bacterial community and fermentation quality during ensiling of wilted and unwilted Moringa oleifera leaf silage with or without lactic acid bacterial inoculants. mSphere 4, e00341–19, https://doi.org/10.1128/mSpher....
 
79.
Weimer P.J., Moen G.N., 2013. Quantitative analysis of growth and volatile fatty acid production by the anaerobic ruminal bacterium Megasphaera elsdenii T81. Appl. Microbiol. Biotechnol. 97, 4075–4081, https://doi.org/10.1007/s00253....
 
80.
Wu G., 2017. Principles of Animal Nutrition. 1st Edition. CRC Press Taylor & Francis Group. Boca Raton, FL (USA), https://doi.org/10.1201/978131....
 
81.
Xiao Y., Sun L., Wang Z., Wang W., Xin X., Xu L., Du S., 2022. Fermentation characteristics, microbial compositions, and predicted functional profiles of forage oat ensiled with Lactiplantibacillus plantarum or Lentilactobacillus buchneri. Fermentation 8, 707, https://doi.org/10.3390/fermen....
 
82.
Xu Y., Li Z., Moraes L.E., Shen J., Yu Z., Zhu W., 2019. Effects of incremental urea supplementation on rumen fermentation, nutrient digestion, plasma metabolites, and growth performance in fattening lambs. Animals 9, 652, https://doi.org/10.3390/ani909....
 
83.
Zewdie A.K., 2018. The different methods of measuring feed digestibility: A review. EC Nutr. 14.1, 68–74, https://ecronicon.net/assets/e....
 
84.
Zhao C., Xie S., Pu Y., Zhang R., Huang F., Ragauskas A.J., Yuan J.S., 2016. Synergistic enzymatic and microbial lignin conversion. Green Chem. 18, 1306–1312, https://doi.org/10.1039/C5GC01....
 
85.
Zhen Y., Chundang P., Zhang Y., Wang M., Vongsangnak W., Pruksakorn C., Kovitvadhi A., 2020. Impacts of killing process on the nutrient content, product stability and in vitro digestibility of black soldier fly (Hermetia illucens) larvae meals. Appl. Sci. 10, 6099, https://doi.org/10.3390/app101....
 
ISSN:1230-1388
Journals System - logo
Scroll to top