ORIGINAL PAPER
 
KEYWORDS
TOPICS
ABSTRACT
This study investigated the effects of dietary protein levels on the growth and physiology of domesticated European perch (Perca fluviatilis) reared in a recirculating aquaculture system (RAS). Perch fingerlings (initial body weight of 72.8 ± 1.9 g) were divided into three groups (P41, P46 and P51; 275 fish each), and fed isoenergetic diets with varying levels of fish meal inclusion: 44, 52 or 60%, corresponding to 41.3, 46, and 50.5% protein in the diet, respectively. The experiment lasted 12 weeks. The level of dietary protein significantly influenced the specific growth rate, feed conversion ratio, and protein efficiency ratio, with group P41 performing significantly worse than other groups . Moreover, fish from group P46 had lower muscle fat content (5%) than P41 (11.2%) and P51 (12.2%), as well as decreased blood plasma creatinine levels, and alanine aminotransferase and aspartate aminotransferase activity. Furthermore, histological analysis revealed alterations in hepatocyte parameters (reduced cytoplasmic and nuclear areas) in group P51. Fish from group P51 also had a significantly lower expression level of the interleukin 6 gene when compared to P46, both in the anterior intestine and liver. Group P46 showed a significantly lower expression level of the solute carrier family 15 member 1b gene in the liver. So, the recommended dietary protein proportion for maximising the growth and feed utilisation was determined at 46% (group P46). The current findings contribute to the optimisation of feed formulation for domesticated European perch and provide valuable insights for the sustainable development of RAS-based perch aquaculture.
FUNDING
This study was conducted as part of the project titled ‘Diversification of the productive function of earthen ponds based on semi-intensive rearing of Perca fluviatilis – PROPERCH’ (No. 00002-6521.1-OR1400004/17/20) funded by the Operational Programme ‘Fisheries and Sea’ (2014–2020), through the Agency for Restructuring and Modernisation of Agriculture (ARMA) of Poland.
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
REFERENCES (73)
1.
Adamek A., Kasprzak A., 2018. Insulin-like growth factor (IGF) system in liver diseases. Int. J. Mol. Sci. 19, 1308, https://doi.org/10.3390/IJMS19....
 
2.
AOAC International, 2016. Official methods of analysis of AOAC International. 20th Edition, https://www.techstreet.com/sta... (accessed 02.14.24).
 
3.
Alam M.S., Liang X.F., Liu L., He S., Kuang Y., Hoseinifar S.H., Dawar F.U., 2019. Growth and metabolic response of chinese perch to different dietary protein-to-energy ratios in artificial diets. Int. J. Mol. Sci., 20, 5983, https://doi.org/10.3390/ijms20....
 
4.
Baloch A.A., Abdelsalam E.E.E., Piačková V., 2021. Cytokines studied in carp (Cyprinus carpio L.) in response to important diseases. Fishes 7, 3, https://doi.org/10.3390/fishes....
 
5.
Béné C., Arthur R., Norbury H. et al., 2016. contribution of fisheries and aquaculture to food security and poverty reduction: assessing the current evidence. World Dev. 79, 177–196, https://doi.org/10.1016/J.WORL....
 
6.
Béné C., Barange M., Subasinghe R., Pinstrup-Andersen P., Merino G., Hemre G.I., Williams M., 2015. Feeding 9 billion by 2050 – Putting fish back on the menu. Food Secur. 7, 261–274, https://doi.org/10.1007/s12571....
 
7.
Bigarré L., Plassiart G., de Boisséson C., Pallandre L., Pozet F., Ledoré Y., Fontaine P., Lieffrig F., 2017. Molecular investigations of outbreaks of Perch perhabdovirus infections in pike-perch. Dis. Aquat. Organ. 127, 19–27, https://doi.org/10.3354/DAO031....
 
8.
Bochert R., 2020. Comparative performance, biochemical composition, and fatty acid analysis of Eurasian perch (Perca fluviatilis) during grow-out in RAS fed different commercial diets. J. Appl. Aquac. 34, 208–222, https://doi.org/10.1080/104544....
 
9.
Bojarski B., Witeska M., 2020. Blood biomarkers of herbicide, insecticide, and fungicide toxicity to fish—a review. Environ. Sci. Pollut. Res. 27, 19236–19250, https://doi.org/10.1007/s11356....
 
10.
Burri L., Thoresen G.H., Berge R K., 2010. The role of PPARα activation in liver and muscle. PPAR Res. 2010, 542359, https://doi.org/10.1155/2010/5....
 
11.
Castro C., Couto A., Pérez-Jiménez A., Serra C.R., Díaz-Rosales P., Fernandes R., Corraze G., Panserat S., Oliva-Teles A., 2016. Effects of fish oil replacement by vegetable oil blend on digestive enzymes and tissue histomorphology of European sea bass (Dicentrarchus labrax) juveniles. Fish Physiol. Biochem. 42, 203–217, https://doi.org/10.1007/s10695....
 
12.
Çiçek S., Özoğul F., 2021. Effects of selenium nanoparticles on growth performance, hematological, serum biochemical parameters, and antioxidant status in fish. Anim. Feed Sci. Technol. 281, 115099, https://doi.org/10.1016/j.anif....
 
13.
Costa M.M., Maehr T., Diaz-Rosales P., Secombes C.J., Wang T., 2011. Bioactivity studies of rainbow trout (Oncorhynchus mykiss) interleukin-6: effects on macrophage growth and antimicrobial peptide gene expression. Mol. Immunol. 48, 1903–1916, https://doi.org/10.1016/j.moli....
 
14.
Craig S., Helfrich L.A., Kuhn D., Schwarz M.H., 2017. Understanding Fish Nutrition, Feeds, and Feeding, https://vtechworks.lib.vt.edu/... (accessed 04.05.23).
 
15.
Emiroğlu Ö., Tarkan A.S., Top N., Baskurt S., Sulun S., 2012. Growth and life history traits of a highly exploited population of non-native gibel carp, Carassius gibelio from a large eutrophic lake (Lake Uluabat, NW Turkey): is reproduction the key factor for establishment success? Turkish J. Fish. Aquat. Sci. 12, 925–936, https://doi.org/10.4194/1303-2....
 
16.
FAO (Food and Agriculture Organization), 2019. The state of the world’s aquatic genetic resources for food and agriculture [WWW Document]. Rome FAO Comm. Genet. Resour. Food Agric. assessments, https://www.proquest.com/openv... (accessed 04.05.23).
 
17.
FAO (Food and Agriculture Organization), 2022. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. Rome (Italy), https://doi.org/10.4060/cc0461....
 
18.
Fiogbé E.D., Kestemont P., Mélard C., Micha J.C., 1996. The effects of dietary crude protein on growth of the Eurasian perch Perca fluviatilis. Aquac. 144, 239–249, https://doi.org/10.1016/S0044-....
 
19.
Fontaine P., Teletchea F., 2019. Domestication of the Eurasian Perch (Perca fluviatilis). In: F. Teletchea (Editor). Animal Domestication. IntechOpen Ltd. London (United Kingdom), https://doi.org/10.5772/INTECH....
 
20.
Føre M., Frank K., Norton T. et al., 2017. Precision fish farming: A new framework to improve production in aquaculture. Biosyst. Eng. 173, 176–193, https://doi.org/10.1016/j.bios....
 
21.
Fulton T.W. (Editor), 1911. The sovereignty of the sea: An historical account of the claims of England to the domination of the British seas and of the evolution of the theoretical waters: with special reference to the rights of the fishing and the naval salute. W. Blackwood and Sons. Edinburgh (United Kingdom), p. 777.
 
22.
Geay F., Kestemont P., 2015. Feeding and nutrition of percid fishes during ongrowing stages. In: P. Kestemont, K. Dabrowski, R. Summerfelt (Editors). Biology and Culture of Percid Fishes. Springer. Dordrecht (Netherlands), pp. 587–622, https://doi.org/10.1007/978-94....
 
23.
Granada L., Sousa N., Lopes S., Lemos M.F., 2015. Is integrated multitrophic aquaculture the solution to the sectors’ major challenges? – a review. Rev. Aquac. 8, 283–300, https://doi.org/10.1111/raq.12....
 
24.
Jin Y., Tian L.X., Xie S.W., Guo D.Q., Yang H.J., Liang G.Y., Liu Y.J., 2015. Interactions between dietary protein levels, growth performance, feed utilization, gene expression and metabolic products in juvenile grass carp (Ctenopharyngodon idella). Aquac. 437, 75–83, https://doi.org/10.1016/j.aqua....
 
25.
Kamaszewski M., Napora-Rutkowski Ł., Ostaszewska T., 2010. Effect of feeding on digestive enzyme activity and morphological changes in the liver and pancreas of pike-perch (Sander lucioperca). Isr. J. Aquac. 62, 225–236.
 
26.
Kamaszewski M., Ostaszewska T., 2014. The effect of feeding on morphological changes in intestine of pike-perch (Sander lucioperca L.). Aquac. Int. 22, 245–258, https://doi.org/10.1007/s10499....
 
27.
Kasprzak R., Grzeszkiewicz A.B., Górecka A., 2021. Performance of co-housed neon tetras (Paracheirodon innesi) and glowlight rasboras (Trigonostigma hengeli) fed commercial flakes and lyophilized natural food. Animals 11, 3520, https://doi.org/10.3390/ani111....
 
28.
Kasprzak R., Ostaszewska T., Kamaszewski M., 2019. Effects of feeding commercial diets on the development of juvenile crucian carp Carassius carassius: digestive tract abnormalities. Aquat. Biol. 28, 159–173, https://doi.org/10.3354/ab0071....
 
29.
Kestemont P., Mélard C., Fiogbé E., Vlavonou R., Masson G., 1996. Nutritional and animal husbandry aspects of rearing early life stages of Eurasian perch Perca fluviatilis. J. Appl. Ichthyol. 12, 157–165, https://doi.org/10.1111/J.1439....
 
30.
Kowalska A., Zakęś Z., Jankowska B., Siwicki A., 2010. Impact of diets with vegetable oils on the growth, histological structure of internal organs, biochemical blood parameters, and proximate composition of pikeperch Sander lucioperca (L.). Aquac. 301, 69–77, https://doi.org/10.1016/j.aqua....
 
31.
Lin S.M., Shi C.M., Mu M.M., Chen Y.J., Luo L., 2018. Effect of high dietary starch levels on growth, hepatic glucose metabolism, oxidative status and immune response of juvenile largemouth bass, Micropterus salmoides. Fish Shellfish Immunol. 78, 121–126, https://doi.org/10.1016/j.fsi.....
 
32.
Mathis N., Feidt C., Brun-Bellut J., 2003. Influence of protein/energy ratio on carcass quality during the growing period of Eurasian perch (Perca fluviatilis). Aquac. 217, 453–464, https://doi.org/10.1016/S0044-....
 
33.
Milla S., Pasquet A., El Mohajer L., Fontaine P., 2021. How domestication alters fish phenotypes. Rev. Aquac. 13, 388–405, https://doi.org/10.1111/RAQ.12....
 
34.
Millikin M.R., 1982. Effects of dietary protein concentration on growth, feed efficiency, and body composition of age-0 striped bass. Trans. Am. Fish. Soc. 111, 373–378, https://doi.org/10.1577/1548-8...<373:EODPCO>2.0.CO;2.
 
35.
Nyina-wamwiza L., Xu X.L., Blanchard G., Kestemont P., 2005. Effect of dietary protein, lipid and carbohydrate ratio on growth, feed efficiency and body composition of pikeperch Sander lucioperca fingerlings. Aquac. Res. 36, 486–492, https://doi.org/10.1111/j.1365....
 
36.
Ostaszewska T., Dabrowski K., Kamaszewski M., Grochowski P., Verri T., Rzepkowska M., Wolnicki J., 2010. The effect of plant protein-based diet supplemented with dipeptide or free amino acids on digestive tract morphology and PepT1 and PepT2 expressions in common carp (Cyprinus carpio L.). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 157, 158–169, https://doi.org/10.1016/j.cbpa....
 
37.
Palińska-Żarska K., Król J., Woźny M., Kamaszewski M., Szudrowicz H., Wiechetek W., Brzuzan P., Fopp-Bayat D., Żarski D., 2021. Domestication affected stress and immune response markers in Perca fluviatilis in the early larval stage. Fish Shellfish Immunol. 114, 184–198, https://doi.org/10.1016/J.FSI.....
 
38.
Palińska-Żarska K., Woźny M., Kamaszewski M., Szudrowicz H., Brzuzan P., Żarski D., 2020. Domestication process modifies digestion ability in larvae of Eurasian perch (Perca fluviatilis), a freshwater Teleostei. Sci. Rep. 10, 2211, https://doi.org/10.1038/s41598....
 
39.
Pedersen S., Wik T., 2020. A comparison of topologies in recirculating aquaculture systems using simulation and optimization. Aquac. Eng. 89, 102059, https://doi.org/10.1016/J.AQUA....
 
40.
Podgorniak T., Dhanasiri A., Chen X., Ren X., Kuan P.F., Fernandes J., 2022. Early fish domestication affects methylation of key genes involved in the rapid onset of the farmed phenotype. Epigenetics 17, 1281–1298, https://doi.org/10.1080/155922....
 
41.
Policar T., Schaefer F.J., Panana E., Meyer S., Teerlinck S., Toner D., Żarski D., 2019. Recent progress in European percid fish culture production technology—tackling bottlenecks. Aquac. Int. 27, 1151–1174, https://doi.org/10.1007/S10499....
 
42.
Price E.O., 1984. Behavioral Aspects of Animal Domestication. Q. Rev. Biol. 59, 1–32, https://doi.org/10.1086/413673.
 
43.
Price E.O., 1999. Behavioral development in animals undergoing domestication. Appl. Anim. Behav. Sci. 65, 245–271, https://doi.org/10.1016/S0168-....
 
44.
Rašković B., Ćirić M., Koko V., Stanković M., Živić I., Marković Z., Poleksić V., 2016. Effect of supplemental feeds on liver and intestine of common carp (Cyprinus carpio) in semi-intensive rearing system: histological implications. Biologia 71, 212–219, https://doi.org/10.1515/biolog....
 
45.
Rojas I., Caballero-Solares A., Vadboncoeur É., Sandrelli R.M., Hall J.R., Clow K.A., Parrish C.C., Rise M.L., Swason A.K., Gamperl A.K., 2024. Prolonged cold exposure negatively impacts atlantic salmon (Salmo salar) liver metabolism and function. Biology 13, 494, https://doi.org/10.3390/biolog....
 
46.
Romano A., Barca A., Storelli C., Verri T., 2014. Teleost fish models in membrane transport research: the PEPT1 (SLC15A1) H+ – oligopeptide transporter as a case study. J. Physiol. 592, 881–897, https://doi.org/10.1113/jphysi....
 
47.
Schulz C., Böhm M., Wirth M., Rennert B., 2007. Effect of dietary protein on growth, feed conversion, body composition and survival of pike perch fingerlings (Sander lucioperca). Aquac. Nutr. 13, 373–380, https://doi.org/10.1111/j.1365....
 
48.
Shahjahan M., Islam M.J., Hossain M.T., Mishu M.A., Hasan J., Brown C., 2022. Blood biomarkers as diagnostic tools: An overview of climate-driven stress responses in fish. Sci. Total Environ. 843, 156910, https://doi.org/10.1016/j.scit....
 
49.
Sicuro B., 2021. World aquaculture diversity: origins and perspectives. Rev. Aquac. 13, 1619–634, https://doi.org/10.1111/raq.12....
 
50.
Stejskal V., Tran H.Q., Prokesova M., Gebauer T., Giang P.T., Gai F., Gasco L., 2010. Partially defatted Hermetia Illucens larva meal in diet of eurasian perch (Perca fluviatilis) Juveniles. Animals 10, 1876, https://doi.org/10.3390/ani101....
 
51.
Strand Å., Alanärä A., Staffan F., Magnhagen C., 2007. Effects of tank colour and light intensity on feed intake, growth rate and energy expenditure of juvenile Eurasian perch, Perca fluviatilis L. Aquac. 272, 312–318, https://doi.org/10.1016/J.AQUA....
 
52.
Szczepański A., Adamek-Urbańska D., Kasprzak R., Szudrowicz H., Śliwiński J., Kamaszewski M., 2022. Lupin: A promising alternative protein source for aquaculture feeds? Aquac. Rep. 26, 101281, https://doi.org/10.1016/J.AQRE....
 
53.
Teletchea F., 2021. Fish domestication in aquaculture: 10 unanswered questions. Anim. Front. 11, 87–91, https://doi.org/10.1093/AF/VFA....
 
54.
Teletchea F., Fontaine P., 2012. Levels of domestication in fish: implications for the sustainable future of aquaculture. Fish Fish. 15, 181–195, https://doi.org/10.1111/faf.12....
 
55.
Teng S.K., Chua T.E., Lim P.E., 1978. Preliminary observation on the dietary protein requirement of estuary grouper, Epinephelus salmoides Maxwell, cultured in floating net-cages. Aquaculture 15, 257–271, https://doi.org/10.1016/0044-8....
 
56.
Thorpe J.E., 1977. Daily ration of adult perch. Perca fluviatilis L. during summer in Loch Leven, Scotland. J. Fish Biol. 11, 55–68, https://doi.org/10.1111/j.1095....
 
57.
Tran H.Q., von Siebenthal E.W., Luce J.B., Nguyen T.T., Tomčala A., Stejskal V., Janssens T., 2024. Complementarity of insect meal and poultry by-product meal as replacement for fishmeal can sustain the production performance of European perch (Perca fluviatilis), reduce economic fish-in fish-out ratio and food-feed competition, and influence the environmental indices. Aquac. 579, 740166, https://doi.org/10.1016/J.AQUA....
 
58.
Urán P.A., Gonçalves A.A., Taverne-Thiele J.J., Schrama J.W., Verreth J.A.J., Rombout J.H.W.M., 2008. Soybean meal induces intestinal inflammation in common carp (Cyprinus carpio L.). Fish Shellfish Immunol. 25, 751–760, https://doi.org/10.1016/j.fsi.....
 
59.
Vatsos I.N., 2021. Planning and reporting of the histomorphometry used to assess the intestinal health in fish nutrition research—suggestions to increase comparability of the studies. Front. Vet. Sci. 8, 666044, https://doi.org/10.3389/fvets.....
 
60.
Verri T., Barca A., Pisani P., Piccinni B., Storelli C., Romano A., 2017. Di-and tripeptide transport in vertebrates: the contribution of teleost fish models. J. Comp. Physiol. B 187, 395–462, https://doi.org/10.1007/s00360....
 
61.
Vilhelmsson O.T., Martin S.A.M., Médale F., Kaushik S.J., Houlihan D.F., 2004. Dietary plant-protein substitution affects hepatic metabolism in rainbow trout (Oncorhynchus mykiss). Br. J. Nutr. 92, 71–80, https://doi.org/10.1079/BJN200....
 
62.
Wang J., Yan X., Lu R., Meng X., Nie G., 2017. Peptide transporter 1 (PepT1) in fish: A review. Aquac. Fish. 2, 193–206, https://doi.org/10.1016/j.aaf.....
 
63.
Wang Y., Meng R., Xu X., Liao K., Ran Z., Xu J., Cao J., Wang Y., Wang D., Xu S., Yan, X., 2019. Effects of nutritional status and diet composition on fatty acid transporters expression in zebrafish (Danio rerio). Aquac. Res. 50, 904–914, https://doi.org/10.1111/are.13....
 
64.
Way K., Haenen O., Stone D. et al., 2017. Emergence of carp edema virus (CEV) and its significance to European common carp and koi Cyprinus carpio. Dis. Aquat. Organ. 126, 155–166, https://doi.org/10.3354/DAO031....
 
65.
Wold P.A., Hoehne-Reitan K., Cahu C.L., Infante J.Z., Rainuzzo J., Kjørsvik, E., 2009. Comparison of dietary phospholipids and neutral lipids: effects on gut, liver and pancreas histology in Atlantic cod (Gadus morha L.) larvae. Aquac. Nutr. 15, 73–84, https://doi.org/10.1111/j.1365....
 
66.
Xu H., Zhang Y., Wang C., Wei Y., Zheng K., Liang M., 2017. Cloning and characterization of fatty acid transport proteins in Japanese seabass Lateolabrax japonicus, and their gene expressions in response to dietary arachidonic acid. Aquac. Res. 48, 5718–5728, https://doi.org/10.1111/are.13....
 
67.
Yang S.D., Liou C.H., Liu F.G., 2002. Effects of dietary protein level on growth performance, carcass composition and ammonia excretion in juvenile silver perch (Bidyanus bidyanus). Aquac. 213, 363–372, https://doi.org/10.1016/S0044-....
 
68.
Yousefi M., Hoseini S.M., Kulikov E.V., Kharlitskaya, E.V., Petukhov N.V., Khomenets N.G., 2024. Dietary propionate administration improves growth performance, hepatic lipid deposition, and intestinal activity of digestive enzymes, inflammation, bacterial population, and antioxidant capacity in rainbow trout, Oncorhynchus mykiss. Aquac. 578, 740099, https://doi.org/10.1016/j.aqua....
 
69.
Yue K., Shen Y., 2022. An overview of disruptive technologies for aquaculture. Aquac. Fish. 7, 111–120, https://doi.org/10.1016/j.aaf.....
 
70.
Zaid M.Z.A., Ramiah S.K., Jamein E.S., Zulkifli I., Lokman I.H., Amirul F.M.A., Fadzlin S.A.A., Mohd Zamri S., Jayanegara A., Hassim H.A., 2023. Potential use of black soldier fly, Hermetia illucens larvae in chicken feed as a protein replacer: a review. J. Anim. Feed Sci. 32, 341–353, https://doi.org/10.22358/jafs/....
 
71.
Zakaria M.K., Kari Z.A., Van Doan H., Kabir M.A., Che Harun H., Mohamad Sukri S.A., Goh K.W., Wee W., Khoo M.I., Wei L.S., 2022. Fermented soybean meal (FSBM) in African catfish (Clarias gariepinus) diets: effects on growth performance, fish gut microbiota analysis, blood haematology, and liver morphology. Life 12, 1851, https://doi.org/10.3390/life12....
 
72.
Zhao L.L., Wang D.X., Liao Z.B., Bi Q.Z., Ma Q., Wei Y.L., Liang M.Q., Qiao X.T., Cheng Z.Y., Xu H.G., 2022. Tissue distribution and nutritional regulation of fatty acid transport protein Scopthalmus maximus and Takifugu rubripes. Chin. J. Anim. Nutr. 34, 6620–6633.
 
73.
Zou Y., Wang X., Chen Z., Yao W., Ai Y., Liu Y., Hayat T., Alsaedi A., Alharbi N.S., Wang X., 2016. Superior coagulation of graphene oxides on nanoscale layered double hydroxides and layered double oxides. Environ. Pollut. 219, 107–117, https://doi.org/10.1016/j.envp....
 
ISSN:1230-1388
Journals System - logo
Scroll to top