REVIEW PAPER
 
KEYWORDS
TOPICS
ABSTRACT
The feedstock market is changing in response to the increasing demand for lipid and protein sources, alongside the pursuit of more sustainable agriculture. As a result, alternative nutrient sources are being extensively studied. Insects have gained attention as a promising feed material due to their high protein digestibility, favourable amino acid and lipid profiles, as well as nutraceutical potential. However, studies on their utilisation often neglect the health status of insects, which may influence feed quality and the health of animals consuming it. This review examines the potential of insects as a feed material considering their fat and protein content, amino acid profiles, potential application in bioconversion, controversies surrounding their consumption, regulatory frameworks, and the potential of synanthropic species as bioindicators. Regarding the lack of standardised methods for monitoring the health and welfare of these ‘small livestock’ and experimental models, we assessed the applicability of biochemical assays commonly employed in toxicological studies. Based on our evaluation, we identified and selected most suitable parameters for the purpose under discussion.
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
REFERENCES (178)
1.
ReferencesAbd-El Wahed S.M.N., Ahmad A.F., 2019. Variations in chemical composition value of adults and nymphs desert locust, Schistocerca gregaria Forskal (Orthoptera: Acrididae). J. Plant Prot. Pathol. 10, 677–681, https://doi.org/10.21608/jppp.....
 
2.
Abdou M., Zyaan O., 2023. The proficiency of silver nanoparticles in controlling cotton leafworm, Spodoptera littoralis (Boisd.), under the laboratory conditions. Egypt. J. Zool. 80, 1–17, https://doi.org/10.21608/ejz.2....
 
3.
Adámková A., Kouřimská L., Borkovcová M., Kulma M., Mlček J., 2016. Nutritional valuse of edible coleoptera (Tenebrio molitor, Zophobas morio and Alphitobius diaperinus) reared reared in the Czech Republic. Potravin. Slovak J. Food Sci. 10, 663−671, https://doi.org/10.5219/609.
 
4.
Adamo S.A., 2010. Why should an immune response activate the stress response? Insights from the insects (the cricket Gryllus texensis). Brain. Behav. Immun. 24, 194–200, https://doi.org/10.1016/j.bbi.....
 
5.
Adli D.N., 2021. Use of insects in poultry feed as replacement soya bean meal and fish meal in development countries: a systematic review. Livest. Res. Rural Dev. 33, 10.
 
6.
Aguilar J.G. dos S., 2021. An overview of lipids from insects. Biocatal. Agric. Biotechnol. 33, 101967, https://doi.org/10.1016/j.bcab....
 
7.
Ahmad S., Pritsos C.A., Bowen S.M., Heisler C.R., Blomquist G.J., Pardini R.S., 1988. Antioxidant enzymes of larvae of the cabbage looper moth, Trzchoplusza Ni: Subcellular distribution and activities of superoxide dismutase, catalase and glutathione reductase. Free Radic. Res. Commun. 4, 403–408, https://doi.org/10.3109/107157....
 
8.
Ahmad S., Zaman K., MacGill R.S., Batcabe J.P., Pardini R.S., 1995. Dichlone-induced oxidative stress in a model insect species, Spodoptera eridania. Arch. Environ. Contam. Toxicol. 29, 442–448, https://doi.org/10.1007/BF0020....
 
9.
Al-Homidan I.H., Basha N.E., Abou-Emera O.K., Ebeid T.A., Al-Waily S.M., Alamer S.S., Fathi M.M., 2024. Effects of Desert locust dietary supplementation (Schistocerca gregaria) on growth performance, carcass quality and blood biochemistry of broiler chickens. Egypt. Poult. Sci. J. 44, 231–242, https://doi.org/10.21608/epsj.....
 
10.
Alif Alisha A.S., Thangapandiyan S., 2019. Comparative bioassay of silver nanoparticles and malathion on infestation of red flour beetle, Tribolium castaneum. J. Basic Appl. Zool. 80, 55, https://doi.org/10.1186/s41936....
 
11.
Allam R.O.H., Badawy A.M.M., Ali M.A., 2022. Green synthesized silver nanoparticles for controlling subterranean termites, Psammotermes hypostoma (Desn.). SVU-International J. Agric. Sci. 4, 135–143, https://doi.org/10.21608/svuij....
 
12.
Álvarez-Lario B., Macarrón-Vicente J., 2010. Uric acid and evolution. Rheumatology 49, 2010–2015, https://doi.org/10.1093/rheuma....
 
13.
Anankware J.P., Roberts B.J., Cheseto X., Osuga I., Savolainen V., Collins C.M., 2021. The nutritional profiles of five important edible insect species from West Africa-An analytical and literature synthesis. Front. Nutr. 8, 792941, https://doi.org/10.3389/fnut.2....
 
14.
Anreddy R.N.R., 2018. Copper oxide nanoparticles induces oxidative stress and liver toxicity in rats following oral exposure. Toxicol. Rep. 5, 903–904, https://doi.org/10.1016/j.toxr....
 
15.
Arakane Y., Muthukrishnan S., 2010. Insect chitinase and chitinase-like proteins. Cell. Mol. Life Sci. 67, 201–216, https://doi.org/10.1007/s00018....
 
16.
Asghar M.S., Sarwar Z.M., Almadiy A.A., Shami A., El Hadi Mohamed R.A., Ahmed N., Waghulade M.S., Alam P., Abd Al Galil F.M., 2022. Toxicological effects of silver and zinc oxide nanoparticles on the biological and life table parameters of Helicoverpa armigera (Noctuidae: Lepidoptera). Agriculture 12, 1744, https://doi.org/10.3390/agricu....
 
17.
Assar A.A., Abo El-Mahasen M.M., Dahi H.F., Amin H.S., 2016. Biochemical effects of some insect growth regulators and bioinsecticides against cotton leafworm, Spodoptera littoralis (Boisd.) (Lepidoptera Noctuidae). J. Biosci. Appl. Res. 2, 587−594, https://doi.org/10.21608/jbaar....
 
18.
Ávalos A., Haza A.I., Drosopoulou E., Mavragani-Tsipidou P., Morales P., 2015. In vivo genotoxicity assesment of silver nanoparticles of different sizes by the Somatic Mutation and Recombination Test (SMART) on Drosophila. Food Chem. Toxicol. 85, 114–119, https://doi.org/10.1016/j.fct.....
 
19.
Barrett M., Caponera V., McNair C., O’Donnell S., Marenda D.R., 2020. Potential for use of erythritol as a socially transferrable ingested insecticide for ants (Hymenoptera: Formicidae). J. Econ. Entomol. 113, 1382–1388, https://doi.org/10.1093/jee/to....
 
20.
Bartucz T., Csókás E., Nagy B., Gyurcsák M.P., Bokor Z., Bernáth G., Molnár J., Urbányi B., Csorbai B., 2023. Black soldier fly (Hermetia illucens) meal as direct replacement of complex fish feed for rainbow trout (Oncorhynchus mykiss) and African catfish (Clarias gariepinus). Life 13, 1978, https://doi.org/10.3390/life13....
 
21.
Bednářová M., Borkovcová M., Komprda T., 2014. Purine derivate content and amino acid profile in larval stages of three edible insects. J. Sci. Food Agric. 94, 71–76, https://doi.org/10.1002/jsfa.6....
 
22.
Bessa L.W., Pieterse E., Sigge G., Hoffman L.C., 2020. Insects as human food; from farm to fork. J. Sci. Food Agric. 100, 5017–5022, https://doi.org/10.1002/jsfa.8....
 
23.
Beyers M., Coudron C., Ravi R., Meers E., Bruun S., 2023. Black soldier fly larvae as an alternative feed source and agro-waste disposal route - A life cycle perspective. Resour. Conserv. Recycl. 192, 106917, https://doi.org/10.1016/j.resc....
 
24.
Bhatt P., Bhatt K., Huang Y., Lin Z., Chen S., 2020. Esterase is a powerful tool for the biodegradation of pyrethroid insecticides. Chemosphere 244, 125507, https://doi.org/10.1016/j.chem....
 
25.
Biasato I., De Marco M., Rotolo L. et al., 2016. Effects of dietary Tenebrio molitor meal inclusion in free-range chickens. J. Anim. Physiol. Anim. Nutr. (Berl). 100, 1104–1112, https://doi.org/10.1111/jpn.12....
 
26.
Blow F., Douglas A.E., 2019. The hemolymph microbiome of insects. J. Insect Physiol. 115, 33–39, https://doi.org/10.1016/j.jins....
 
27.
Brandon A.M., Garcia A.M., Khlystov N.A., Wu W.-M., Criddle C.S., 2021. Enhanced Bioavailability and microbial biodegradation of polystyrene in an enrichment derived from the gut microbiome of Tenebrio molitor (mealworm larvae). Environ. Sci. Technol. 55, 2027–2036, https://doi.org/10.1021/acs.es....
 
28.
Bujak R., Struck-Lewicka W., Markuszewski M.J., Kaliszan R., 2015. Metabolomics for laboratory diagnostics. J. Pharm. Biomed. Anal. 113, 108–120, https://doi.org/10.1016/j.jpba....
 
29.
Bulak P., Proc K., Pawłowska M., Kasprzycka A., Berus W., Bieganowski A., 2020. Biogas generation from insects breeding post production wastes. J. Clean. Prod. 244, 118777, https://doi.org/10.1016/j.jcle....
 
30.
Bulak P., Proc K., Pytlak A., Puszka A., Gawdzik B., Bieganowski A., 2021. Biodegradation of different types of plastics by Tenebrio molitor insect. Polymers (Basel). 13, 3508, https://doi.org/10.3390/polym1....
 
31.
Buteler M., Lopez Garcia G., Stadler T., 2018. Potential of nanostructured alumina for leaf-cutting ants Acromyrmex lobicornis (Hymenoptera: Formicidae) management. Austral Entomol. 57, 292–296, https://doi.org/10.1111/aen.12....
 
32.
Cerreta A.J., Smith D.C., Ange-Van Heugten K., Minter L.J., 2022. Comparative nutrient analysis of four species of cockroaches used as food for insectivores by life stage, species, and sex. Zoo Biol. 41, 26–33, https://doi.org/10.1002/zoo.21....
 
33.
Cho J.H., Kim I.H., 2011. Fish meal - nutritive value. J. Anim. Physiol. Anim. Nutr. (Berl). 95, 685–692, https://doi.org/10.1111/j.1439....
 
34.
Costa S., Pedro S., Lourenço H., Batista I., Teixeira B., Bandarra N.M., Murta D., Nunes R., Pires C., 2020. Evaluation of Tenebrio molitor larvae as an alternative food source. NFS J. 21, 57–64, https://doi.org/10.1016/j.nfs.....
 
35.
Cuvillier-Hot V., Salin K., Devers S., Tasiemski A., Schaffner P., Boulay R., Billiard S., Lenoir A., 2014. Impact of ecological doses of the most widespread phthalate on a terrestrial species, the ant Lasius niger. Environ. Res. 131, 104–110, https://doi.org/10.1016/j.envr....
 
36.
Czechowski W., Radchenko A., Czechowska W., Vepsa-la-inen K., 2012. The ants of Poland: with reference to the myrmecofauna of Europe. Natura Optima dux Foundation. Warsaw (Poland).
 
37.
Da Lage J.-L., 2018. The amylases of insects. Int. J. Insect Sci. 10, 117954331880478, https://doi.org/10.1177/117954....
 
38.
Dastranj M., Bandani A.R., Mehrabadi M., 2013. Age-specific digestion of Tenebrio molitor (Coleoptera: Tenebrionidae) and inhibition of proteolytic and amylolytic activity by plant proteinaceous seed extracts. J. Asia. Pac. Entomol. 16, 309–315, https://doi.org/10.1016/j.aspe....
 
39.
Dias F.A., Gandara A.C.P., Perdomo H.D. et al., 2016. Identification of a selenium-dependent glutathione peroxidase in the blood-sucking insect Rhodnius prolixus. Insect Biochem. Mol. Biol. 69, 105–114, https://doi.org/10.1016/j.ibmb....
 
40.
Dixit G., Praveen A., Tripathi T., Yadav V.K., Verma P.C., 2017. Herbivore-responsive cotton phenolics and their impact on insect performance and biochemistry. J. Asia. Pac. Entomol. 20, 341–351, https://doi.org/10.1016/j.aspe....
 
41.
Dolezal T., Krejcova G., Bajgar A., Nedbalova P., Strasser P., 2019. Molecular regulations of metabolism during immune response in insects. Insect Biochem. Mol. Biol. 109, 31–42, https://doi.org/10.1016/j.ibmb....
 
42.
EFSA Panel on Nutrition, Novel Foods and Allergens (NDA), Turck D., Castenmiller J. et al., 2021a. Safety of dried yellow mealworm (Tenebrio molitor larva) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 19, e06343, https://doi.org/10.2903/j.efsa....
 
43.
EFSA Panel on Nutrition, Novel Foods and Allergens (NDA), Turck D., Castenmiller J. et al., 2021b. Safety of frozen and dried formulations from migratory locust (Locusta migratoria) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 19, e06667, https://doi.org/10.2903/j.efsa....
 
44.
El-Ashmouny R.S., Rady M.H., Merdan B.A., El-Sheikh T.A.A., Hassan R.E., El Gohary E.G.E., 2022. Larvicidal and pathological effects of green synthesized silver nanoparticles from Artemisia herba-alba against Spodoptera littoralis through feeding and contact application. Egypt. J. Basic Appl. Sci. 9, 239–253, https://doi.org/10.1080/231480....
 
45.
Elbein A.D., Pan Y.T., Pastuszak I., Carroll D., 2003. New insights on trehalose: a multifunctional molecule. Glycobiology 13, Sci. 42, 333–344, https://doi.org/10.1007/s42690....
 
46.
European Commission D.-G. for H. and F.S.S., 2023a. Commission Implementing Regulation (EU) 2023/5 of 3 January 2023 authorising the placing on the market of Acheta domesticus (house cricket) partially defatted powder as a novel food and amending Implementing Regulation (EU) 2017/2470. Off. J. Eur. Union L 2/9.
 
47.
European Commission D.-G. for H. and F.S.S., 2023b. Commission Implementing Regulation (EU) 2023/58 of 5 January 2023 authorising the placing on the market of the frozen, paste, dried and powder forms of Alphitobius diaperinus larvae (lesser mealworm) as a novel food and amending Implementing Regulation. Off. J. Eur. Union L 5/10.
 
48.
European Commission D.-G. for H. and F.S.S., 2021a. Commission Implementing Regulation (EU) 2021/405 of 24 March 2021 laying down the lists of third countries or regions thereof authorised for the entry into the Union of certain animals and goods intended for human consumption in accordance with Regulation. Off. J. Eur. Union L 114/118.
 
49.
European Commission D.-G. for H. and F.S.S., 2021b. Commission Regulation (EU) 2021/1925 of 5 November 2021 amending certain Annexes to Regulation (EU) No 142/2011 as regards the requirements for placing on the market of certain insect products and the adaptation of a containment method (Text with EEA relevance). Off. J. Eur. Union L 393/4.
 
50.
European Commission D.-G. for H. and F.S.S., 2017a. Regulation (EU) No 2017/893 of 24 May 2017 Amending Annexes I and IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council and Annexes X, XIV and XV to Commission Regulation (EU) No 142/2011 as Regards the Provisions on processed animal protein (Text with EEA relevance). Off. J. Eur. Union L 138/92.
 
51.
European Commission D.-G. for H. and F.S.S., 2017b. Regulation (EU) No 2017/1017 of 15 June 2017 Amending Regulation (EU) No 68/2013 on the Catalogue of Feed Materials. Off. J. Eur. Union L 159/48.
 
52.
European Parliament C. of the E.U.D.-G. for H. and F.S., 2015. Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on novel foods, amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001 (Text with EEA relevance). Off. J. Eur. Union L 327/1.
 
53.
European Parliament C. of the E.U.D.-G. for H. and F.S., 2005. Regulation (EC) No 183/2005 of the European Parliament and of the Council of 12 January 2005 laying down requirements for feed hygiene. Off. J. Eur. Union L 35/1.
 
54.
European Parliament C. of the E.U.D.-G. for H. and F.S., 2004. Regulation (EC) No 852/2004 of the european parliament and of the council of 29 April 2004 on the hygiene of foodstuffs. Off. J. Eur. Communities L 139/1.
 
55.
European Parliament C. of the E.U.D.-G. for H. and F.S., 2002a. Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on Undesirable Substances in Animal Feed. Off. J. L 140, 30/05/2002, 0010-0022.
 
56.
European Parliament C. of the E.U.D.-G. for H. and F.S., 2002b. Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January 2002 laying down the general principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety. Off. J. L 031, 01/02/2002, 0001-0024.
 
57.
Felton G.W., Summers C.B., 1995. Antioxidant systems in insects. Arch. Insect Biochem. Physiol. 29, 187–197, https://doi.org/10.1002/arch.9....
 
58.
Finke M.D., 2013. Complete Nutrient content of four species of feeder insects. Zoo Biol. 32, 27–36, https://doi.org/10.1002/zoo.21....
 
59.
Freel T.A., McComb A., Koutsos E.A., 2021. Digestibility and safety of dry black soldier fly larvae meal and black soldier fly larvae oil in dogs. J. Anim. Sci. 99, skab047, https://doi.org/10.1093/jas/sk....
 
60.
Fu S.-F., Wang D.-H., Xie Z., Zou H., Zheng Y., 2022. Producing insect protein from food waste digestate via black soldier fly larvae cultivation: A promising choice for digestate disposal. Sci. Total Environ. 830, 154654, https://doi.org/10.1016/j.scit....
 
61.
Gandotra S., Bhuyan P.M., Gogoi D.K., Kumar A., Subramanian S., 2018. Screening of nutritionally important gut bacteria from the lepidopteran insects through qualitative enzyme assays. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 88, 329–337, https://doi.org/10.1007/s40011....
 
62.
Garofalo C., Milanović V., Cardinali F., Aquilanti L., Clementi F., Osimani A., 2019. Current knowledge on the microbiota of edible insects intended for human consumption: A state-of-the-art review. Food Res. Int. 125, 108527, https://doi.org/10.1016/j.food....
 
63.
Gasco L., Biancarosa I., Liland N.S., 2020. From waste to feed: A review of recent knowledge on insects as producers of protein and fat for animal feeds. Curr. Opin. Green Sustain. Chem. 23, 67–79, https://doi.org/10.1016/j.cogs....
 
64.
Gong Y.-J., Wang Z.-H., Shi B.-C., Kang Z.-J., Zhu L., Jin G.-H., Weig S.-J., 2013. Correlation between pesticide resistance and enzyme activity in the diamondback moth, Plutella xylostella. J. Insect Sci. 13, 135, https://doi.org/10.1673/031.01....
 
65.
Haber M., Mishyna M., Martinez J.J.I., Benjamin O., 2019. The influence of grasshopper (Schistocerca gregaria) powder enrichment on bread nutritional and sensorial properties. LWT 115, 108395, https://doi.org/10.1016/j.lwt.....
 
66.
Hamadah K.S., 2019. Disturbance of phosphatase and transaminase activities in grubs of the red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae) by certain insecticidal compounds. J. Basic Appl. Zool. 80, 52, https://doi.org/10.1186/s41936....
 
67.
Hartfelder K., Bitondi M.M.G., Brent C.S., Guidugli-Lazzarini K.R., Simões Z.L.P., Stabentheiner A., Tanaka É.D., Wang Y., 2013. Standard methods for physiology and biochemistry research in Apis mellifera. J. Apic. Res. 52, 1–48, https://doi.org/10.3896/IBRA.1....
 
68.
Hartmann C., Shi J., Giusto A., Siegrist M., 2015. The psychology of eating insects: A cross-cultural comparison between Germany and China. Food Qual. Prefer. 44, 148–156, https://doi.org/10.1016/j.food....
 
69.
Hashem A.S., Ramadan M.M., Abdel-Hady A.A.A., Sut S., Maggi F., Dall’Acqua S., 2020. Pimpinella anisum essential oil nanoemulsion toxicity against Tribolium castaneum? Shedding light on Its interactions with aspartate aminotransferase and alanine aminotransferase by molecular docking. Molecules 25, 4841, https://doi.org/10.3390/molecu....
 
70.
Heard M.S., Baas J., Dorne J.-L., Lahive E., Robinson A.G., Rortais A., Spurgeon D.J., Svendsen C., Hesketh H., 2017. Comparative toxicity of pesticides and environmental contaminants in bees: Are honey bees a useful proxy for wild bee species? Sci. Total Environ. 578, 357–365, https://doi.org/10.1016/j.scit....
 
71.
Hong J., Han T., Kim Y.Y., 2020. Mealworm (Tenebrio molitor larvae) as an alternative protein source for monogastric animal: A review. Animals 10, 2068, https://doi.org/10.3390/ani101....
 
72.
Houben D., Daoulas G., Faucon M.-P., Dulaurent A.-M., 2020. Potential use of mealworm frass as a fertilizer: Impact on crop growth and soil properties. Sci. Rep. 10, 4659, https://doi.org/10.1038/s41598....
 
73.
Huang C., Feng W., Xiong J., Wang T., Wang W., Wang C., Yang F., 2019. Impact of drying method on the nutritional value of the edible insect protein from black soldier fly (Hermetia illucens L.) larvae: amino acid composition, nutritional value evaluation, in vitro digestibility, and thermal properties. Eur. Food Res. Technol. 245, 11–21, https://doi.org/10.1007/s00217....
 
74.
Huang S., Li J., Zhang Y. et al., 2021. A novel method for the detection and diagnosis of virus infections in honey bees. J. Virol. Methods 293, 114163, https://doi.org/10.1016/j.jvir....
 
75.
Iaconisi V., Marono S., Parisi G., Gasco L., Genovese L., Maricchiolo G., Bovera F., Piccolo G., 2017. Dietary inclusion of Tenebrio molitor larvae meal: Effects on growth performance and final quality treats of blackspot sea bream (Pagellus bogaraveo). Aquaculture 476, 49–58, https://doi.org/10.1016/j.aqua....
 
76.
İçen E., Armutçu F., Büyükgüzel K., Gürel A., 2005. Biochemical stress indicators of greater wax moth exposure to organophosphorus insecticides. J. Econ. Entomol. 98, 358–366, https://doi.org/10.1093/jee/98....
 
77.
Jackson C.J., Liu J.-W., Carr P.D. et al., 2013. Structure and function of an insect α-carboxylesterase (α Esterase 7) associated with insecticide resistance. Proc. Natl. Acad. Sci. 110, 10177–10182, https://doi.org/10.1073/pnas.1....
 
78.
Jaffar S., Ahmad S., Lu Y., 2022. Contribution of insect gut microbiota and their associated enzymes in insect physiology and biodegradation of pesticides. Front. Microbiol. 13, 979383, https://doi.org/10.3389/fmicb.....
 
79.
Jajić I., Krstović S., Petrović M., Urošević M., Glamočić D., Samardžić M., Popović A., Guljaš D., 2022. Changes in the chemical composition of the yellow mealworm (Tenebrio molitor L.) reared on different feedstuffs. J. Anim. Feed Sci. 31, 191–200, https://doi.org/10.22358/jafs/....
 
80.
Janssen R.H., Vincken J.-P., van den Broek L.A.M., Fogliano V., Lakemond C.M.M., 2017. Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem. 65, 2275–2278, https://doi.org/10.1021/acs.ja....
 
81.
Jeong S.-M., Khosravi S., Mauliasari I.R., Lee S.-M., 2020. Dietary inclusion of mealworm (Tenebrio molitor) meal as an alternative protein source in practical diets for rainbow trout (Oncorhynchus mykiss) fry. Fish. Aquat. Sci. 23, 12, https://doi.org/10.1186/s41240....
 
82.
Jones D., Jones G., Bhaskaran G., 1981. Dietary sugars, hemolymph trehalose levels, and supernumerary molting of manduca sexta larvae. Physiol. Zool. 54, 260–266, https://doi.org/10.1086/physzo....
 
83.
Joshi M.J., Varadharasu P.R., Solanki B.C., Birari V.V., 2020. Silverfish (Lepisma saccharina): An overview and their management. Agric. Foods e-Newsletter 2, 490–493.
 
84.
Józefiak A., Kierończyk B., Rawski M., Mazurkiewicz J., Benzertiha A., Gobbi P., Nogales-Merida S., Świątkiewicz S., Józefiak D., 2018. Full-fat insect meals as feed additive - the effect on broiler chicken growth performance and gastrointestinal tract microbiota. J. Anim. Feed Sci. 27, 131–139, https://doi.org/10.22358/jafs/....
 
85.
Kadir R., Li W.Y., Mat Arip M.N., Lee H.L., 2023. Incorporation of permethrin into chitosan polymeric nanoparticles using nanoprecipitation method for rubberwood preservation against termite attack. Wood Mater. Sci. Eng. 18, 1562–1572, https://doi.org/10.1080/174802....
 
86.
Kamaszewski M., Kawalski K., Wiechetek W. et al., 2023. The Effect of silver nanoparticles on the digestive system, gonad morphology, and physiology of butterfly splitfin (Ameca splendens). Int. J. Mol. Sci. 24, 14598, https://doi.org/10.3390/ijms24....
 
87.
Kamita S.G., Hammock B.D., 2010. Juvenile hormone esterase: biochemistry and structure. J. Pestic. Sci. 35, 265–274, https://doi.org/10.1584/jpesti....
 
88.
Kierończyk B., Kaczmarek S.A., Hejdysz M. et al., 2024. Implementation of a metabolizable energy regression model for black soldier fly larvae fat in broiler chicken diets: effect on growth performance, nutrient digestibility, and selected physiological indices. J. Anim. Feed Sci. 33, 493–503, https://doi.org/10.22358/jafs/....
 
89.
Kierończyk B., Rawski M., Mikołajczak Z., Homska N., Jankowski J., Ognik K., Józefiak A., Mazurkiewicz J., Józefiak D., 2022. Available for millions of years but discovered through the last decade: Insects as a source of nutrients and energy in animal diets. Anim. Nutr. 11, 60–79, https://doi.org/10.1016/j.anin....
 
90.
Kissoum N., Soltani N., 2016. Spiromesifen, an insecticide inhibitor of lipid synthesis, affects the amounts of carbohydrates, glycogen and the activity of lactate dehydrogenase in Drosophila melanogaster. J. Entomol. Zool. Stud. 4, 452–456.
 
91.
Kitto G.B., Briggs M.H., 1962. Lactate dehydrogenase in some insect muscles. Nature 193, 1003–1004, https://doi.org/10.1038/193100....
 
92.
Koto A., Tamura M., Wong P.S. et al., 2023. Social isolation shortens lifespan through oxidative stress in ants. Nat. Commun. 14, 5493, https://doi.org/10.1038/s41467....
 
93.
Kulma M., Kouřimská L., Homolková D., Božik M., Plachý V., Vrabec V., 2020. Effect of developmental stage on the nutritional value of edible insects. A case study with Blaberus craniifer and Zophobas morio. J. Food Compos. Anal. 92, 103570, https://doi.org/10.1016/j.jfca....
 
94.
Kulma M., Plachý V., Kouřimská L., Vrabec V., Bubová T., Adámková A., Hučko B., 2016. Nutritional value of three Blattodea species used as feed for animals. J. Anim. Feed Sci. 25, 354–360, https://doi.org/10.22358/jafs/....
 
95.
Lähteenmäki-Uutela A., Marimuthu S.B.S., Meijer N., 2021. Regulations on insects as food and feed: a global comparison. J. Insects as Food Feed 7, 849–856, https://doi.org/10.3920/JIFF20....
 
96.
Lam P.Y., Abdul Latif N.S., Thevan K., Rao P.V., Wan Muhamed W.Z., 2021. Nutrient composition of Blaptica dubia (Order: Blattodea) as an alternative protein source. J. Trop. Resour. Sustain. Sci. 6, 88–92, https://doi.org/10.47253/jtrss....
 
97.
Lee K.P., Simpson S.J., Wilson K., 2008. Dietary protein-quality influences melanization and immune function in an insect. Funct. Ecol. 22, 1052–1061, https://doi.org/10.1111/j.1365....
 
98.
Litwack G. (Editor), 2022. Metabolism of Amino Acids. Human Biochemistry. Elsevier. Amsterdam (Netherlands), pp. 403–440, https://doi.org/10.1016/B978-0....
 
99.
Liu Z., Zhao J., Lu K., Wang Z., Yin L., Zheng H., Wang X., Mao L., Xing B., 2022. Biodegradation of graphene oxide by insects (Tenebrio molitor Larvae): Role of the gut microbiome and enzymes. Environ. Sci. Technol. 56, 16737–16747, https://doi.org/10.1021/acs.es....
 
100.
Lou Y., Li Y., Lu B., Liu Q., Yang S.-S., Liu B., Ren N., Wu W.-M., Xing D., 2021. Response of the yellow mealworm (Tenebrio molitor) gut microbiome to diet shifts during polystyrene and polyethylene biodegradation. J. Hazard. Mater. 416, 126222, https://doi.org/10.1016/j.jhaz....
 
101.
Łosiewicz B., Szudrowicz H., 2024. Impact of slaughter method on stress in organic common carp (Cyprinus carpio). J. Anim. Feed Sci. 33, 562–570, https://doi.org/10.22358/jafs/....
 
102.
Łoś A., Strachecka A., 2018. Fast and cost-effective biochemical spectrophotometric analysis of solution of insect «blood» and body surface elution. Sensors 18, 1494, https://doi.org/10.3390/s18051....
 
103.
Ma Z., Fu J., Zhang Y., Wang L., Luo Y., 2024. Toxicity and behavioraltering effects of three nanomaterials on red imported fire ants and their effectiveness in combination with indoxacarb. Insects 15, 96, https://doi.org/10.3390/insect....
 
104.
Macedo M.L.R., Freire M. das G.M., 2011. Insect digestive enzymes as a target for pest control. Invertebr. Surviv. J. 8, 190–198.
 
105.
Magsalay A.G., Carnoso C.L., Niepes R.A., 2024. Growth performance, carcass characteristics and meat quality of grower native chicken (Gallus gallus domesticus L.) fed with superworm (Zophobas morio F.) as protein source substitute to soybean meal (Glycine max L.). Livest. Res. Rural Dev. 36, 4.
 
106.
Mali B., Okello S., Ocaido M., Nalule A.S., 2020. Optimal inclusion level of termite meal replacing fish meal in broiler diets. Livest. Res. Rural Dev. 32,11.
 
107.
Marieshwari B.N., Bhuvaragavan S., Sruthi K., Mullainadhan P., Janarthanan S., 2023. Insect phenoloxidase and its diverse roles: melanogenesis and beyond. J. Comp. Physiol. B 193, 1–23, https://doi.org/10.1007/s00360....
 
108.
Martínez-Girón R., Martínez-Torre C., van Woerden H.C., 2017. The prevalence of protozoa in the gut of German cockroaches (Blattella germanica) with special reference to Lophomonas blattarum. Parasitol. Res. 116, 3205–3210, https://doi.org/10.1007/s00436....
 
109.
Matthäus B., Piofczyk T., Katz H., Pudel F., 2019. Renewable resources from insects: exploitation, properties, and refining of fat obtained by cold-pressing from Hermetia illucens (black soldier fly) larvae. Eur. J. Lipid Sci. Technol. 121, 1800376, https://doi.org/10.1002/ejlt.2....
 
110.
Mba A.R.F., Kansci G., Viau M., Hafnaoui N., Meynier A., Demmano G., Genot C., 2017. Lipid and amino acid profiles support the potential of Rhynchophorus phoenicis larvae for human nutrition. J. Food Compos. Anal. 60, 64–73, https://doi.org/10.1016/j.jfca....
 
111.
Metwally S.A., Abd-Elaziz M.A.A.A.-E., El- Sherif S.I., Ahmed S.S., 2021. Effect of silver and silica nanoparticles on the larvae of pink stem borer Sesamia cretica Lederer, 1857 (Lepidoptera: Noctuidae) and maize plants Zea mays Linneaus, 1753. Polish J. Entomol. 90, 86–102, https://doi.org/10.5604/01.300....
 
112.
Miah M.Y., Singh Y., Cullere M., Tenti S., Dalle Zotte A., 2020. Effect of dietary supplementation with full-fat silkworm (Bombyx mori L.) chrysalis meal on growth performance and meat quality of Rhode Island Red × Fayoumi crossbred chickens. Ital. J. Anim. Sci. 19, 447–456, https://doi.org/10.1080/182805....
 
113.
Mlček J., Adámková A., Adámek M., Borkovcová M., Bednářová M., Kouřimská L., 2018. Selected nutritional values of field cricket (Gryllus assimilis) and its possible use as a human food. Indian J. Tradit. Knowl. 17, 518–524.
 
114.
Mmbone S., Gohole L., Wanjala F., Ronoh A., 2023. Effects of diet on the nutritional composition of the desert locust Schistocerca gregaria (Orthoptera: Acrididae). African J. Trop. Entomol. Res. 2, 1–10, https://doi.org/10.58697/AJTER....
 
115.
Moniello G., Ariano A., Panettieri V. et al., 2019. Intestinal morphometry, enzymatic and microbial activity in laying hens fed different levels of a Hermetia illucens larvae meal and toxic elements content of the insect meal and diets. Animals 9, 86, https://doi.org/10.3390/ani903....
 
116.
Muhammad A., He J., Yu T., Sun C., Shi D., Jiang Y., Xianyu Y., Shao Y., 2022. Dietary exposure of copper and zinc oxides nanoparticles affect the fitness, enzyme activity, and microbial community of the model insect, silkworm Bombyx mori. Sci. Total Environ. 813, 152608, https://doi.org/10.1016/j.scit....
 
117.
Nasser R., Ibrahim E., Fouad H., Ahmad F., Li W., Zhou Q., Yu T., Chidwala N., Mo J., 2024. Termiticidal Effects and morphohistological alterations in the subterranean termite (Odontotermes formosanus) induced by biosynthesized zinc oxide, titanium dioxide, and chitosan nanoparticles. Nanomaterials 14, 927, https://doi.org/10.3390/nano14....
 
118.
Nath B.S., Suresh A., Varma B.M., Kumar R.P.S., 1997. Changes in protein metabolism in hemolymph and Fat body of the silkworm, Bombyx mori (Lepidoptera: Bombycidae) in response to organophosphorus insecticides toxicity. Ecotoxicol. Environ. Saf. 36, 169–173, https://doi.org/10.1006/eesa.1....
 
119.
Navarro del Hierro J., Gutiérrez-Docio A., Otero P., Reglero G., Martin D., 2020. Characterization, antioxidant activity, and inhibitory effect on pancreatic lipase of extracts from the edible insects Acheta domesticus and Tenebrio molitor. Food Chem. 309, 125742, https://doi.org/10.1016/j.food....
 
120.
Nephale L.E., Moyo N.A.G., Rapatsa-Malatji M.M., 2024. Partial replacement of fish meal with soldier termite in juvenile Mozambique tilapia: Effects on growth performance, blood serum chemistry and histomorphology. J. Anim. Feed Sci. 33, 243–252, https://doi.org/10.22358/jafs/....
 
121.
Oibiokpa F.I., Akanya H.O., Jigam A.A., Saidu A.N., Egwim E.C., 2018. Protein quality of four indigenous edible insect species in Nigeria. Food Sci. Hum. Wellness 7, 175–183, https://doi.org/10.1016/j.fshw....
 
122.
Okrutniak M., Grześ I.M., 2021. Accumulation of metals in Lasius niger: Implications for using ants as bioindicators. Environ. Pollut. 268, 115824, https://doi.org/10.1016/j.envp....
 
123.
Orčić S., Nikolić T., Purać J., Šikoparija B., Blagojević D.P., Vukašinović E., Plavša N., Stevanović J., Kojić D., 2017. Seasonal variation in the activity of selected antioxidant enzymes and malondialdehyde level in worker honey bees. Entomol. Exp. Appl. 165, 120–128, https://doi.org/10.1111/eea.12....
 
124.
Özkan Y., İrende İ., Akdeniz G., Kabakcı D., Sökmen M., 2015. Evaluation of the comparative acute toxic effects of TiO2, Ag-TiO2 and ZnO-TiO2 composite nanoparticles on honey bee (Apis mellifera). J. Int. Environ. Appl. Sci. 10, 26–36.
 
125.
Paes M.C., Oliveira M.B., Oliveira P.L., 2001. Hydrogen peroxide detoxification in the midgut of the blood-sucking insect, Rhodnius prolixus. Arch. Insect Biochem. Physiol. 48, 63–71, https://doi.org/10.1002/arch.1....
 
126.
Page M.J., McKenzie J.E., Bossuyt P.M. et al., 2021. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst. Rev. 10, 89, https://doi.org/10.1186/s13643....
 
127.
Park J.-W., Kim M., Kim S.-Y., Bae J., Kim T.-J., 2023. Biodegradation of polystyrene by intestinal symbiotic bacteria isolated from mealworms, the larvae of Tenebrio molitor. Heliyon 9, e17352, https://doi.org/10.1016/j.heli....
 
128.
Pedersen K.E., Pedersen N.N., Meyling N.V., Fredensborg B.L., Cedergreen N., 2020. Differences in life stage sensitivity of the beetle Tenebrio molitor towards a pyrethroid insecticide explained by stage-specific variations in uptake, elimination and activity of detoxifying enzymes. Pestic. Biochem. Physiol. 162, 113–121, https://doi.org/10.1016/j.pest....
 
129.
Peñaflorida V.D., 1989. An evaluation of indigenous protein sources as potential component in the diet formulation for tiger prawn, Penaeus monodon, using essential amino acid index (EAAI). Aquaculture 83, 319–330, https://doi.org/10.1016/0044-8....
 
130.
Peng B.-Y., Chen Z., Chen J., Zhou X., Wu W.-M., Zhang Y., 2021. Biodegradation of polylactic acid by yellow mealworms (larvae of Tenebrio molitor) via resource recovery: A sustainable approach for waste management. J. Hazard. Mater. 416, 125803, https://doi.org/10.1016/j.jhaz....
 
131.
Perez-Santaescolastica C., de Pril I., van de Voorde I., Fraeye I., 2023. Fatty acid and amino acid profiles of seven edible insects: focus on lipid class composition and protein conversion factors. Foods 12, 4090, https://doi.org/10.3390/foods1....
 
132.
Piechowicz B., Sudoł M., Grodzicki P., Podbielska M., Szpyrka E., Zwolak A., Potocki L., 2021. The dynamics of pyrethroid residues and Cyp P450 gene expression in insects depends on the circadian clock. Environ. Res. 194, 110701, https://doi.org/10.1016/j.envr....
 
133.
Prachom N., Boonyoung S., Hassaan M.S., El-Haroun E., Davies S.J., 2021. Preliminary evaluation of Superworm (Zophobas morio) larval meal as a partial protein source in experimental diets for juvenile Asian sea bass, Lates calcarifer. Aquac. Nutr. 27, 1304–1314, https://doi.org/10.1111/anu.13....
 
134.
Puppel K., Slósarz J., Grodkowski G., Solarczyk P., Kostusiak P., Kunowska-Slósarz M., Grodkowska K., Zalewska A., Kuczyńska B., Gołębiewski M., 2022. Comparison of enzyme activity in order to describe the metabolic profile of dairy cows during early lactation. Int. J. Mol. Sci. 23, 9771, https://doi.org/10.3390/ijms23....
 
135.
Quinteros M.F., Martínez J., Barrionuevo A., Rojas M., Carrillo W., 2022. Functional, antioxidant, and anti-inflammatory properties of cricket protein concentrate (Gryllus assimilis). Biology (Basel). 11, 776, https://doi.org/10.3390/biolog....
 
136.
Ramzy A.Y., Seemab Z., Fouzi A.M., 2022. Use of locust meal as alternative protein source to fish meal in practical diets for fingerling Oreochromis niloticus. Asian J. Anim. Vet. Adv. 17, 16–27, https://doi.org/10.3923/ajava.....
 
137.
Rocha A.G., Oliveira B.M.S., Melo C.R., Sampaio T.S., Blank A.F., Lima A.D., Nunes R.S., Araújo A.P.A., Cristaldo P.F., Bacci L., 2018. Lethal effect and behavioral responses of leaf-cutting ants to essential oil of Pogostemon cablin (Lamiaceae) and its nanoformulation. Neotrop. Entomol. 47, 769–779, https://doi.org/10.1007/s13744....
 
138.
Saha D., Mukhopadhyay A., Bahadur M., 2012. Effect of host plants on fitness traits and detoxifying enzymes activity of Helopeltis theivora, a major sucking insect pest of tea. Phytoparasitica 40, 433–444, https://doi.org/10.1007/s12600....
 
139.
Salmela H., Sundström L., 2017. Vitellogenin in inflammation and immunity in social insects. Inflamm. Cell Signal. 4, e1506, https://doi.org/10.14800/ics.1....
 
140.
Santana C.C., Barbosa L.A., Júnior I.D.B., do Nascimento T.G., Dornelas C.B., Grillo L.A.M., 2017. Lipase activity in the larval midgut of rhynchophorus palmarum: biochemical characterization and the effects of reducing agents. Insects 8, 100, https://doi.org/10.3390/insect....
 
141.
Schneider S.A., Schrader C., Wagner A.E., Boesch-Saadatmandi C., Liebig J., Rimbach G., Roeder T., 2011. Stress resistance and longevity are not directly linked to levels of enzymatic antioxidants in the ponerine ant harpegnathos saltator. PLoS One 6, e14601, https://doi.org/10.1371/journa....
 
142.
Sezer Tuncsoy B., Tuncsoy M., Gomes T., Sousa V., Teixeira M.R., Bebianno M.J., Ozalp P., 2019. Effects of copper oxide nanoparticles on tissue accumulation and antioxidant enzymes of Galleria mellonella L. Bull. Environ. Contam. Toxicol. 102, 341−346, https://doi.org/10.1007/s00128....
 
143.
Sheeja C.C., Anusri A., Levna C., Aneesh P.M., Lekha D., 2020. MoS2 nanoparticles induce behavioral alteration and oxidative stress mediated cellular toxicity in the social insect Oecophylla smaragdina (Asian weaver ant). J. Hazard. Mater. 385, 121624, https://doi.org/10.1016/j.jhaz....
 
144.
Siddiqui S.A., Thanpandiyan K., Adli D.N., Yudhistira B., Fernando I., De Palo P., 2024. Overview of the African palm weevil (Rhynchophorus phoenicis) as food and feed - A critical review. J. Insects Food Feed 1, 1–28, https://doi.org/10.1163/235245....
 
145.
Simon J.Y., 1996. Insect glutathione s-transferases. Zool. Stud. 35, 9–19.
 
146.
Sioutas G., Tsouknidas A., Gelasakis A.I., Vlachou A., Kaldeli A.K., Kouki M., Symeonidou I., Papadopoulos E., 2023. In Vitro acaricidal activity of silver nanoparticles (AgNPs) against the poultry red mite (Dermanyssus gallinae). Pharmaceutics 15, 659, https://doi.org/10.3390/pharma....
 
147.
Skaldina O., Sorvari J., 2017. Biomarkers of ecotoxicological effects in social insects. In: U. Forstner, W.H. Rulkens (Editors). Environmental Science and Engineering (Subseries: Environmental Science). Springer Berlin. Heidelberg (Germany), pp. 203–214, https://doi.org/10.1007/978-3-....
 
148.
Sogari G., Amato M., Biasato I., Chiesa S., Gasco L., 2019. The potential role of insects as feed: A multi-perspective review. Animals 9, 119, https://doi.org/10.3390/ani904....
 
149.
Sujak A., Kotlarz A., Strobel W., 2006. Compositional and nutritional evaluation of several lupin seeds. Food Chem. 98, 711–719, https://doi.org/10.1016/j.food....
 
150.
Sullivan L.B., Gui D.Y., Heiden M.G. Vander, 2016. Altered metabolite levels in cancer: implications for tumour biology and cancer therapy. Nat. Rev. Cancer 16, 680–693, https://doi.org/10.1038/nrc.20....
 
151.
Szczepański A., Adamek-Urbańska D., Kasprzak R., Szudrowicz H., Śliwiński J., Kamaszewski M., 2022. Lupin: A promising alternative protein source for aquaculture feeds? Aquac. Rep. 26, 101281, https://doi.org/10.1016/j.aqre....
 
152.
Tasaki E., Sakurai H., Nitao M., Matsuura K., Iuchi Y., 2017. Uric acid, an important antioxidant contributing to survival in termites. PLoS One 12, e0179426, https://doi.org/10.1371/journa....
 
153.
Teleb S.S., Farag A.A., Mostafa A.A.Z.M., 2012. Effect of pyridalyl on alkaline phosphatase and transaminase activities in some tissues of Schistocerca gregaria (Orthoptera: Acrididae). J. Am. Sci. 8, 315–322.
 
154.
Tellis M.B., Kotkar H.M., Joshi R.S., 2023. Regulation of trehalose metabolism in insects: from genes to the metabolite window. Glycobiology 33, 262–273, https://doi.org/10.1093/glycob....
 
155.
Tlak Gajger I., Vlainić J., Šoštarić P., Prešern J., Bubnič J., Smodiš Škerl M.I., 2020. Effects on some therapeutical, biochemical, and immunological parameters of honey bee (Apis mellifera) exposed to probiotic treatments, in field and laboratory conditions. Insects 11, 638, https://doi.org/10.3390/insect....
 
156.
Tomé H.V.V., Schmehl D.R., Wedde A.E., Godoy R.S.M., Ravaiano S. V., Guedes R.N.C., Martins G.F., Ellis J.D., 2020. Frequently encountered pesticides can cause multiple disorders in developing worker honey bees. Environ. Pollut. 256, 113420, https://doi.org/10.1016/j.envp....
 
157.
Toprak U., Hegedus D., Doğan C., Güney G., 2020. A journey into the world of insect lipid metabolism. Arch. Insect Biochem. Physiol. 104, e21682, https://doi.org/10.1002/arch.2....
 
158.
Tufail M., Nagaba Y., Elgendy A.M., Takeda M., 2014. Regulation of vitellogenin genes in insects. Entomol. Sci. 17, 269–282, https://doi.org/10.1111/ens.12....
 
159.
Turek J., Sampels S., Khalili Tilami S. et al., 2020. Insects in the feed of rainbow trout Oncorhynchus mykiss (Actinopterygii, Salmonidae): effect on growth, fatty acid composition and sensory attributes. Acta Ichthyol. Piscat. 50, 171–181, https://doi.org/10.3750/AIEP/0....
 
160.
van Huis A., 2020. Insects as food and feed, a new emerging agricultural sector: a review. J. Insects as Food Feed 6, 27–44, https://doi.org/10.3920/JIFF20....
 
161.
van Huis A., van Itterbeck J., Klunder H., Mertens E., Halloran A., Muir G., Vantomme P., 2013. Edible insects: future prospects for food and feed security. Food and Agriculture Organisation of the United Nations. Rome (Italy).
 
162.
Venugopal V., Gopakumar K., 2017. Shellfish: nutritive value, health benefits, and consumer safety. Compr. Rev. Food Sci. Food Saf. 16, 1219–1242, https://doi.org/10.1111/1541-4....
 
163.
Vrabec V., Kulma M., Cocan D., 2015. Insects as an alternative protein source for animal feeding: a short review about chemical composition. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Anim. Sci. Biotechnol. 72, 116–126, https://doi.org/10.15835/buasv....
 
164.
Vural O., Tunç A., Kamaszewski M., Aksakal E., 2023. Is royal jelly a sustainable alternative lipid source in aquaculture? Influence of dietary royal jelly levels on fatty acid composition in zebrafish. J. Anim. Feed Sci. 32, 459–467, https://doi.org/10.22358/jafs/....
 
165.
Wang G., Zhou J.-J., Li Y., Gou Y., Quandahor P., Liu C., 2021. Trehalose and glucose levels regulate feeding behavior of the phloem-feeding insect, the pea aphid Acyrthosiphon pisum Harris. Sci. Rep. 11, 15864, https://doi.org/10.1038/s41598....
 
166.
Wangberg H., Mendoza J., Gomez R., Coop C., White A., Woessner K., 2021. The first reported case of Blaptica dubia cockroach allergy. Allergy Asthma Clin. Immunol. 17, 114, https://doi.org/10.1186/s13223....
 
167.
Weihrauch D., O’Donnell M.J., 2021. Mechanisms of nitrogen excretion in insects. Curr. Opin. Insect Sci. 47, 25–30, https://doi.org/10.1016/j.cois....
 
168.
Wu Z., Yang L., He Q., Zhou S., 2021. Regulatory mechanisms of vitellogenesis in insects. Front. Cell Dev. Biol. 8, 593613, https://doi.org/10.3389/fcell.....
 
169.
Xiong T., Ling S., Liu J., Zeng X., 2022. Insecticidal and P450 mediate metabolism of fluralaner against red imported fire ant, Solenopsis invicta (Hymenoptera: Formicidae). Pestic. Biochem. Physiol. 187, 105184, https://doi.org/10.1016/j.pest....
 
170.
Xiong T., Qiu X., Ling S., Liu J., Zeng X., 2019. Interaction of fipronil and the red imported fire ant (Solenopsis invicta): Toxicity differences and detoxification responses. J. Insect Physiol. 115, 20–26, https://doi.org/10.1016/j.jins....
 
171.
Yamada T., Habara O., Kubo H., Nishimura T., 2018. Fat body glycogen serves as a metabolic safeguard for the maintenance of sugar levels in Drosophila. Development 145, dev158865, https://doi.org/10.1242/dev.15....
 
172.
Yang L., Chen H., Zheng Q., Luo P., Yan W., Huang S., Cheng D., Hong Xu H., Zhang Z., 2023. A β-cyclodextrin-functionalized metal-organic framework enhances the insecticidal activity of indoxacarb by affecting amino acid metabolism in red imported fire ants. Chem. Eng. J. 458, 141417, https://doi.org/10.1016/j.cej.....
 
173.
Yang S.-S., Brandon A.M., Andrew Flanagan J.C. et al., 2018. Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): Factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere 191, 979–989, https://doi.org/10.1016/j.chem....
 
174.
Yi S., Adams T.S., 2001. Age- and diapause-related acid and alkaline phosphatase activities in the intestine and malpighian tubules of the Colorado potato beetle, Leptinotarsa decemlineata (Say). Arch. Insect Biochem. Physiol. 46, 152–163, https://doi.org/10.1002/arch.1....
 
175.
Zebe E.C., McShan W.H., 1957. Lactic and α-glycerophosphate dehydrogenases in insects. J. Gen. Physiol. 40, 779–790, https://doi.org/10.1085/jgp.40....
 
176.
Zheng Q., Wang R., Qin D., Yang L., Lin S., Cheng D., Huang S., Zhang Z., 2021. Insecticidal efficacy and mechanism of nanoparticles synthesized from chitosan and carboxymethyl chitosan against Solenopsis invicta (Hymenoptera: Formicidae). Carbohydr. Polym. 260, 117839, https://doi.org/10.1016/j.carb....
 
177.
Zibaee A., Zibaee I., Jalali Sendi J., 2011. A juvenile hormone analog, pyriproxifen, affects some biochemical components in the hemolymph and fat bodies of Eurygaster integriceps Puton (Hemiptera: Scutelleridae). Pestic. Biochem. Physiol. 100, 289–298, https://doi.org/10.1016/j.pest....
 
178.
Zielińska E., Baraniak B., Karaś M., Rybczyńska K., Jakubczyk A., 2015. Selected species of edible insects as a source of nutrient composition. Food Res. Int. 77, 460–466, https://doi.org/10.1016/j.food....
 
ISSN:1230-1388
Journals System - logo
Scroll to top