ORIGINAL PAPER
Influence of harvesting periods and additives on the quality
of silage from common reed (Phragmites australis)
and cattail (Typha spp.)
More details
Hide details
1
Burdur Mehmet Akif Ersoy University Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases,
Burdur, Turkey
2
Kayseri Erciyes University, Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases,
Kayseri, Turkey
3
Burdur Mehmet Akif Ersoy University, Faculty of Arts and Sciences, Department of Hydrobiology, Burdur, Turkey
4
Burdur Mehmet Akif Ersoy University Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology,
Burdur, Turkey
Publication date: 2024-11-24
Corresponding author
K. Emre Buğdaycı
Burdur Mehmet Akif Ersoy University Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases, Burdur, Turkey
KEYWORDS
TOPICS
ABSTRACT
The present study determined how additives and harvesting
periods affect the quality of silage from common reed (Phragmites australis)
and cattail (Typha spp.). Both species were harvested separately and together
before and after flowering (June and August). Shredded plants (1–3 cm) were
ensiled in four groups: one control and three experimental groups (addition
of 5% molasses, 5% crushed barley, or 0.5% formic acid). For each harvest
period and treatment, 11 jars were filled and incubated for 3 months. The silages
were examined for their physical and chemical characteristics, volatile fatty acid
and mycotoxin contents, gas production, and organic matter digestibility. The
interaction between harvest period, species, and treatment significantly affected
(P ≤ 0.007) crude protein content, Flieg score, NH3-N/Total N, and in vitro gas
production in silages. Specifically, the August harvest combined with molasses
treatment significantly reduced acid detergent fibre content in silages (P ≤ 0.019).
Cattail silage had significantly lower contents of crude fibre (P < 0.001), acid
detergent fibre (P ≤ 0.006), and neutral detergent fibre (P < 0.001) compared to
common reed silage. The addition of 5% molasses to common reed and cattail
silages significantly increased lactic acid levels (P < 0.001). The effect of harvest
period on gas and methane production proved to be insignificant regardless
of the treatment-species interaction. In conclusion, treating Typha harvested in
June with 5% molasses can be recommended as the most optimal wetland plant
silage. Furthermore, the addition of 5% molasses positively affected the nutrient
content and Flieg score for silages from both species harvested in August.
FUNDING
This study was supported by the Scientific Research Projects Commission Presidency of the Burdur Mehmet Akif Ersoy University. Project No: 0183NAP-13Conflict
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
REFERENCES (31)
1.
Aktaş A.H., Şen S., Yılmazer M., Cubuk E., 2005. Determination of carboxylic acids in apple juice by RP HPLC. Iran J. Chem. Chem. Eng. 24, 1–6,
https://www.ijcce.ac.ir/articl... 6a277c5c0c6c44f8113fcf64eda081.pdf
2.
AOAC International, 2000. Official methods of analysis of AOAC International. 15th Edition, AOAC International, Arlington, Texas (USA)
3.
Asano K., Ishikawa T., Araie A., Ishida M., 2018. Improving quality of common reed (Phragmites communis Trin.) silage with additives. Asian-Australas J. Anim. Sci. 31, 1747–1755,
https://doi.org/10.5713/ajas.1...
4.
Asano K., Nakamura R., Araie A., Koike R., Takahashi K., Madachi T., Ishida M., 2014. Effects of year and harvest time within the year on yield and chemical composition of common reed (Phragmites communis Trin.) as ruminant feed. Grassl. Sci. 61, 1–5,
https://doi.org/10.1111/grs.12...
5.
Beyzi S.B., Ulger I., Konca Y., 2023. Chemical, fermentative, nutritive and anti-nutritive composition of common reed (Phragmites australis) plant and silage. Waste Biomass Valor. 14, 927–936,
https://doi.org/10.1007/s12649...
6.
Crampton E.W., Maynard L., 1938. The relation of cellulose and lignin content to nutritive value of animal feeds. J. Nutr. 15, 383–395,
https://doi.org/10.1093/jn/15....
7.
de Evan T., Musa A.R., Marcos C.N., Alao J.S., Iglesias E., Escribano F., Carro M.D., 2023. Ensiling typha (typha latifolia) forage with different additives for ruminant feeding: in vitro studies. Appl. Sci. 13, 6546,
https://doi.org/10.3390/app131...
8.
Doležal P., 2015. Comparison of the effect of benzoic acid addition on the fermentation process quality with untreated silages. Acta Univ. Agric. Silvic. Mendel. Brun. 52, 15–22,
https://doi.org/10.11118/actau...
9.
Dong Z., Yuan X., Wen A., Desta S.T., Shao T., 2017. Effects of calcium propionate on the fermentation quality and aerobic stability of alfalfa silage. Asian-Australas J. Anim. Sci. 30, 1278–1284,
https://doi.org/10.5713/ajas.1...
10.
Filya I., Sucu E., Karabulut A., 2006. The effect of Lactobacillus buchneri on the fermentation, aerobic stability and ruminal degradability of maize silage. J. Appl. Microbiol. 101, 1216–1223,
https://doi.org/10.1111/j.1365...
11.
Fouad A., Moustafa A., Zaghloul M., Arnous M., 2023. Unraveling the impact of global warming on Phragmites australis distribution in egypt. Catrina Int. J. Environ. Sci. 27, 59–73,
https://doi.org/10.21608/cat.2...
12.
Goering H.K., van Soest P.J., 1970. Forage fiber analyses: Apparatus, reagent, procedures and some applications. U.S. Agricultural Research Service. Washington DC (USA)
13.
Güngör T., Başalan M., Aydoğan İ., 2008. Kırıkkale Yöresinde üretilen bazı kaba yemlerde besin madde miktarları ve metabolize olabilir enerji düzeylerinin belirlenmesi. Ankara Univ. Vet. Fak. Derg. 55, 111–115,
https://doi.org/10.1501/Vetfak...
14.
John M.O., Rufai M.A., Sunday A.J., Fernando E., Richard K., Eva I., Maidala A., Amos M., Chana M., Hannatu C., Sunday A.O., 2022. Cattail (Typha domingensis) silage improves feed intake, blood profile, economics of production, and growth performance of beef cattle. Trop. Anim. Health Prod. 54, 48,
https://doi.org/10.1007/s11250...
16.
Kara K, Güçlü BK, Baytok E. 2015. Comparison of nutrient composition and anti-methanogenic properties of different Rosaceae species. J Anim Feed Sci. 24, 308–314.
https://doi.org/10.22358/jafs/...
17.
Kara K., Özkaya S., Erbaş S., Baytok E., 2017. Effect of dietary formic acid on the in vitro ruminal fermentation parameters of barleybased concentrated mix feed of beef cattle. J. Appl. Anim. Res. 46, 178–183,
https://doi.org/10.1080/097121...
18.
Menke H.H., Steingass H., 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28, 7–55
19.
Musa A., Garba Y., 2022. Nutritive value of untreated and molassesurea treated typha (Typha domingensis) silage. FUDMAJAAT. 8, 70–76,
https://doi.org/10.33003/jaat....
20.
Papathanasiou F., Zaralis K., Koutseri I., Malakou M., Papadopoulos A., Pliantsa A., Aggelaki M., Karetsa V., 2021. Nutritive value of riparian common reed biomass for ruminants. AGROFOR Int. J. 6, 98–105
21.
Rufai M.A., Trinidad E., 2019. Converting invasive macrophyte-typha into silage feed: an opportunity for sustaınable development in hadeija valley (Nigeria). In: XI Congreso de Estudiantes Universitarios de Ciencia, Tecnología e Ingeniería Agronómica, 25–28
22.
Saeed A.A., Hussien H.M., Kareem S., Hamza A.A., Fadhl M.A., Radhi H.S., 2019. Effect of addition of different levels of formic acid and urea on chemical composition and fermentatıon characteristics of wild reed phragmitis communis silage. Iraqi J. Agric. Sci. 50, 1324–1335
23.
Sahindokuyucu F., Mor F., Oğuz M.N., Karakaş Oğuz F., 2010. Burdur İli’nde toplanan silajlarda mikotoksin varlığının ve düzeylerinin araştırılması. Uludag Univ. Vet. Fak. Derg. 29, 49–54
24.
Silva T., Silva L., Santos E., Oliveira J., Perazzo A., 2017. Importance of the fermentation to produce high-quality silage. In: A.F. Jozala (Editors). Fermentation process. Intech, pp. 3–20,
https://doi.org/10.5772/64887
25.
Tekin M., Kara K., 2020. The forage quality and the in vitro ruminal digestibility, gas production, organic acids, and some estimated digestion parameters of tomato herbage silage with molasses and barley. Turk J. Vet. Anim. Sci. 44, 201–213,
https://doi.org/10.3906/vet-19...
26.
Tjardes K.E., Buskirk D.D., Allen M.S., Ames N.K., Bourquin L.D., Rust S.R., 2000. Brown midrib-3 corn silage improves digestion but not performance of growing beef steers, J. Anim. Sci. 78, 2957–2965,
https://doi.org/10.2527/2000.7...
27.
Wakano F., Nohong B., Rinduwati R., 2019. Pengaruh pemberian molases dan gula pasir terhadap ph dan produksi silase rumput gajah (pennisetum purpureun sp). BNTM. 13, 1–9,
https://doi.org/10.20956/bnmt....
28.
Wang Q., Zeng X., Zeng Y. et al., 2022. Effects of Pragmites australis shoot remainder silage on growth performance, blood biochemical parameters, and rumen microbiota of beef cattle. Front. Vet. Sci. 9, 778654
29.
Yıldız, C., Öztürk, İ. Erkmen, Y., 2011. Farklı Hasat Dönemi, Kıyma Boyutu ve Sıkıştırma Basıncının Mısır Silajının Fermantasyon Niteliği Üzerine Etkileri. J. Inst. Sci. and Tech. 1, 85–90
30.
Yuan X., Wen A., Dong Z., Desta S., Shao T., 2017. Effects of formic acid and potassium diformate on the fermentation quality, chemical composition and aerobic stability of alfalfa silage. Grass Forage Sci. 72, 833–839,
https://doi.org/10.1111/gfs.12...
31.
Wetzel R.G., Likens, G.E., 2001. Limnological Analysis, (3rd edition), Springer, NewDelhi