ORIGINAL PAPER
 
KEYWORDS
TOPICS
ABSTRACT
Despite the extensive evidence of health benefits associated with prebiotics, their effects on the haemostatic system remain largely unexplored. Hence, this study aimed to assess the influence of incorporating 1% (T1 diet) or 3% (T2 diet) native chicory inulin into the diet of nursery pigs on plasma proteome changes, focusing particularly on proteins associated with haemostasis and the complement system. Piglets were fed inulin-enriched diets from 10 days of age. Piglets were sacrificed at 50 days of age and blood samples were collected for liquid chromatography-mass spectrometry (LC-MS) analysis. Gene Ontology, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway and proteinprotein interaction analyses of differentially expressed plasma proteins indicated that the direction of changes in proteins related to coagulation and fibrinolysis likely reflected a shift in haemostatic balance towards a more prothrombotic state. Quantitative changes in the expression of several other plasma proteins further supported the well-established anti-inflammatory, immunomodulatory and lipid lowering properties of inulin. In conclusion, inulin effectively coordinated the crosstalk between lipid metabolism and the inflammatory cascade, as reflected by the direction of changes in serum clusterin (Apo J), C-reactive protein and paraoxonase/arylesterase 1 expression levels
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
REFERENCES (28)
1.
Abhari K., Shekarforoush S.S., Hosseinzadeh S., Nazifi S., Sajedianfard J., Eskandari M.H., 2016. The effects of orally administered Bacillus coagulans and inulin on prevention and progression of rheumatoid arthritis in rats. Food Nutr. Res. 60, 30876, https://doi.org/10.3402/fnr.v6...
 
2.
Benjamini Y., Hochberg Y., 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57, 289–300, https://doi.org/10.1111/j.2517...
 
3.
Heegaard P.M., Stockmarr A., Piñeiro M., Carpintero R., Lampreave F., Campbell F.M., Eckersall P.D., Toussaint M.J., Gruys E., Sorensen N.S., 2011. Optimal combinations of acute phase proteins for detecting infectious disease in pigs. BMC Vet. Res. 42, 50, https://doi.org/10.1186/1297-9...
 
4.
Herosimczyk A., Lepczyński A., Ożgo M., Barszcz M., Jaszczuk-Kubiak E., Pierzchała M., Tuśnio A., Skomiał J., 2017. Hepatic proteome changes induced by dietary supplementation with two levels of native chicory inulin in young pigs. Livest. Sci. 203, 54–62, https://doi.org/10.1016/j.livs...
 
5.
Herosimczyk A., Lepczyński A., Ożgo M., Skomiał J., Dratwa-Chałupnik A., Tuśnio A., Taciak M., Barszcz M., 2015. Differentially expressed proteins in the blood serum of piglets in response to a diet supplemented with inulin. Pol. J. Vet. Sci. 18, 541–548, https://doi.org/10.1515/pjvs-2...
 
6.
Herosimczyk A., Lepczyński A., Ożgo M., Tuśnio A., Taciak M., Barszcz M., 2020. Effect of dietary inclusion of 1% or 3% of native chicory inulin on the large intestinal mucosa proteome of growing pigs. Animal 14, 1647–1658, https://doi.org/10.1017/S17517...
 
7.
Herosimczyk A., Lepczyński A., Ożgo M., Barszcz M., Marynowska M., Tuśnio A., Taciak M., Markulen A., Skomiał J., 2018. Proteome changes in ileal mucosa of young pigs resulting from different levels of native chicory inulin in the diet. J. Anim. Feed Sci. 27, 229–237, https://doi.org/10.22358/jafs/...
 
8.
Hiel S., Neyrinck A.M., Rodriguez J., Pachikian B.D., Bouzin C., Thissen J.P., Cani P.D., Bindels L.B., Delzenne N.M., 2018. Inulin improves postprandial hypertriglyceridemia by modulating gene expression in the small intestine. Nutrients 10, 532, https://doi.org/10.3390/nu1005...
 
9.
Hughes R.L., Alvarado D.A., Swanson K.S., Holscher H.D., 2022. The prebiotic potential of inulin-type fructans: a systematic review. Adv. Nutr. 13, 492–529, https://doi.org/10.1093/advanc...
 
10.
Jäckel S., Kiouptsi K., Lillich M. et al., 2017. Gut microbiota regulate hepatic von Willebrand factor synthesis and arterial thrombus formation via Toll-like receptor-2. Blood 130, 542–553, https://doi.org/10.1182/blood-...
 
11.
Lepczynski A., Herosimczyk A., Ozgo M., Skomial J., Taciak M., Barszcz M., Berezecka N., 2015. Dietary supplementation with dried chicory root triggers changes in the blood serum proteins engaged in the clotting process and the innate immune response in growing pigs. J. Physiol. Pharmacol. 66, 47–55
 
12.
Luo S., Hu D., Wang M., Zipfel P.F., Hu Y., 2020. Complement in hemolysis- and thrombosis- related diseases. Front. Immunol. 11, 1212, https://doi.org/10.3389/fimmu....
 
13.
Mehic D., Colling M., Pabinger I., Gebhart J., 2021. Natural anticoagulants: a missing link in mild to moderate bleeding tendencies. Haemophilia 27, 701–709, https://doi.org/10.1111/hae.14...
 
14.
Mohammed Y., Kootte R.S., Kopatz W.F., Borchers C.H., Büller H.R., Versteeg H.H., Nieuwdorp M., van Mens T.E., 2020. The intestinal microbiome potentially affects thrombin generation in human subjects. J. Thromb. Haemost. 18, 642–650, https://doi.org/10.1111/jth.14...
 
15.
Nogal A., Valdes A.M., Menni C., 2021. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardiometabolic health. Gut Microbes 13, e1897212, https://doi.org/10.1080/194909...
 
16.
Robak P., Ożgo M., Lepczyński A., Herosimczyk A., Barszcz M., Taciak M., Skomiał J., 2019. Proteome changes in renal cortex and medulla induced by dietary supplementation with inulin‐type fructans in growing pigs. J. Anim. Physiol. Anim. Nutr. 103, 1837–1847, https://doi.org/10.1111/jpn.13...
 
17.
Sacks F.M., Zheng C., Cohn J.S., 2011. Complexities of plasma apolipoprotein C-III metabolism. J. Lipid Res. 52, 1067–1070, https://doi.org/10.1194/jlr.E0...
 
18.
Sharma M., Khan S., Rahman S., Singh L.R., 2019. The extracellular protein, transthyretin is an oxidative stress biomarker. Front. Physiol. 10, 5, https://doi.org/10.3389/fphys....
 
19.
Singh B., Su Y.C., Riesbeck K., 2010. Vitronectin in bacterial pathogenesis: a host protein used in complement escape and cellular invasion. Mol. Microbiol. 78, 545–560, https://doi.org/10.1111/j.1365...
 
20.
Singh S.K., Ngwa D.N., Agrawal A., 2020. Complement activation by C-reactive protein is critical for protection of mice against pneumococcal infection. Front. Immunol. 11, 1812, https://doi.org/10.3389/fimmu....
 
21.
Szklarczyk D., Gable A.L., Lyon D. et al., 2019. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613, https://doi.org/10.1093/nar/gk...
 
22.
Tang X., Zhang Z., Fang M. et al., 2020. Transferrin plays a central role in coagulation balance by interacting with clotting factors. Cell Res. 30, 119–132, https://doi.org/10.1038/s41422...
 
23.
Uerlings J., Arévalo Sureda E., Schroyen M. et al., 2021. Impact of citrus pulp or inulin on intestinal microbiota and metabolites, barrier, and immune function of weaned piglets. Front. Nutr. 8, 650211, https://doi.org/10.3389/fnut.2...
 
24.
Weisel J.W., Litvinov R.I., 2017. Fibrin formation, structure and properties. In: D.A.D. Parry, J.M. Squire (Editors). Fibrous Proteins: Structures and Mechanisms. Springer. Cham (Switzerland), pp. 405–456, https://doi.org/10.1007/978-3-...
 
25.
Yang N., Qin Q., 2015. Apolipoprotein J. A new predictor and therapeutic target in cardiovascular disease? Chin. Med. J. 128, 2530–2534, https://doi.org/10.4103/0366-6...
 
26.
Yaron J.R., Zhang L., Guo Q., Haydel S.E., Lucas A.R., 2021. Fibrinolytic serine proteases, therapeutic serpins and inflammation: fire dancers and firestorms. Front. Cardiovasc. Med. 8, 648947, https://doi.org/10.3389/fcvm.2...
 
27.
Yasar Yildiz S., Kuru P., Toksoy Oner E., Agirbasli M., 2014. Functional stability of plasminogen activator inhibitor-1. Sci. World J. 2014, 858293, https://doi.org/10.1155/2014/8...
 
28.
Zhou A., Huntington J.A., Pannu N.S., Carrell R.W., Read R.J., 2003. How vitronectin binds PAI-1 to modulate fibrinolysis and cell migration. Nat. Struct. Mol. Biol. 10, 541–544, https://doi.org/10.1038/nsb943
 
ISSN:1230-1388
Journals System - logo
Scroll to top