ORIGINAL PAPER
 
KEYWORDS
TOPICS
ABSTRACT
Over the past few years, air and surface water pollution with nitrogen from agro-industrial waste has become a global environmental concern. Generally, these discards have nutritional value and could be utilised inexpensively for various purposes. The study involved two different phases: 1) production of lactosylurea from agro-industrial by-products and 2) evaluation of the nutritive value of lactosylurea as a non-protein nitrogen source in the ruminant diet, including its effect on feed digestibility and ruminal parameters. The gas production test and in vitro disappearance method were used to describe the digestion kinetics of both dry matter (DM) and crude protein (CP) in the four experimental treatments. Protozoan count and total volatile fatty acid concentration were utilised to evaluate ruminal parameters. The treatments were as follows: 1) basal diet + urea (BDU), 2) basal diet + lactosylurea (BDL), 3) basal diet + concentrated lactosylurea (BDCL), 4) basal diet + slow-release non-protein nitrogen (Optigen) (BDO). According to our findings, gas produced, DM, and CP disappearance were significantly higher in the BDCL and BDO experimental treatments than in the other treatments (P < 0.05). Moreover, estimated levels of metabolisable energy, digestible organic matter and short chain fatty acids were significantly higher for the same treatments (P < 0.05). The number of protozoa (2.66 × 106 organism/ml) and total volatile fatty acid concentration (30.96 mmol/l) were significantly lower in urea treatment compared to others (P < 0.05). In conclusion, lactosylurea produced from agro-industrial by-products seems to be a good alternative for urea or Optigen that additionally reduces environmental contamination by agro-industrial waste.
ACKNOWLEDGEMENTS
We thank the executive personnel of the Advanced Animal Nutrition and Digestion Laboratories of the University of Tabriz and the Tabriz Industrial Slaughterhouse.
FUNDING
This work was supported by the University of Tabriz, International and Academic Cooperation Directorate, under the TabrizU-300 program.
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
REFERENCES (56)
1.
Ahmadi M., Ștef L., Peț I., Morariu F., Tulcan C., Milovanov C., Boldura O.M., Dronca D., Ivancia M., 2018. By-products, bioproteins and animal feed. Sci. Pap. – Anim. Sci. 70, 213–217
 
2.
Álvarez-Cao M.E., Becerra M., González-Siso M.I., 2020. Biovalorization of cheese whey and molasses wastes to galactosidases by recombinant yeasts. In: N.K. Rathinam, R.K. Sani (Editors). Biovalorisation of Wastes to Renewable Chemicals and Biofuels. Elsevier. Amsterdam (Netherlands), pp. 149–161, https://doi.org/10.1016/B978-0...
 
3.
AOAC International, 2005. Official Methods of Analysis of AOAC International. 18th Edition. Gaithersburg, MD (USA)
 
4.
Bacenetti J., Bava L., Schievano A., Zucali M., 2018. Whey protein concentrate (WPC) production: environmental impact assessment. J. Food Eng. 224, 139–147, https://doi.org/10.1016/j.jfoo...
 
5.
Besharati M., Nemati Z., Safari R., 2019. The effect of adding whey and L. buchneri to alfalfa silage on in vitro gas production and degradability. Res. Anim. Prod. 10, 56–63, https://doi.org/10.29252/rap.1...
 
6.
Calsamiglia S., Ferret A., Reynolds C.K., Kristensen N.B., van Vuuren A.M., 2010. Strategies for optimizing nitrogen use by ruminants. Animal 4, 1184–1196, https://doi.org/10.1017/S17517...
 
7.
Castro F., Selmer-Olsen I., Ørskov E., Johnsen F., 1999. Lignin as a carrier for feed grade controlled-release urea. In: Proceedings of the Vth International Symposium of the Nutrition of Herbivores. 11–16 April. San Antonio, TX (USA)
 
8.
Chamebon A., Teimori-Yanesari A., Chashnidel Y., Gafary-Sayadi A., 2017. Effect of citrus pulp silage on fattening performance of Zel male lambs. Iran. J. Anim. Sci. Res. 8, 584–601
 
9.
Cherdthong A., Wanapat M., 2010. Development of urea products as rumen slow-release feed for ruminant production: a review. Aust. J. Basic Appl. Sci. 4, 2232–2241
 
10.
Coleman G.S., 1986. The metabolism of rumen ciliate protozoa. FEMS Microbiol. Rev. 39, 321–344, https://doi.org/10.1016/0378-1...
 
11.
Dehority B.A., Tirabasso P.A., Grifo A.P., 1989. Most-probable-number procedures for enumerating ruminal bacteria, including the simultaneous estimation of total and cellulolytic numbers in one medium. Appl. Environ. Microbiol. 55, 2789–2792, https://doi.org/10.1128/aem.55...
 
12.
Eugène M., Archimède H., Sauvant D., 2004. Quantitative meta-analysis on the effects of defaunation of the rumen on growth, intake and digestion in ruminants. Livest. Prod. Sci. 85, 81–97, https://doi.org/10.1016/S0301-...
 
13.
Fedorah P.M., Hrudey S.E., 1983. A simple apparatus for measuring gas production by methanogenic cultures in serum bottles. Environ. Technol. 4, 425–432, https://doi.org/10.1080/095933...
 
14.
Fessenden S.W., Hackmann T.J., Ross D.A., Block E., Foskolos A., Van Amburgh M.E., 2019. Rumen digestion kinetics, microbial yield, and omasal flows of nonmicrobial, bacterial, and protozoal amino acids in lactating dairy cattle fed fermentation by-products or urea as a soluble nitrogen source. J. Dairy Sci. 102, 3036–3052, https://doi.org/10.3168/jds.20...
 
15.
Galina M.A., Perez-Gil F., Ortiz R.M.A., Hummel J.D., Ørskov R.E., 2003. Effect of slow release urea supplementation on fattening of steers fed sugar cane tops (Saccharum officinarum) and maize (Zea mays): ruminal fermentation, feed intake and digestibility. Livest. Prod. Sci. 83, 1–11, https://doi.org/10.1016/S0301-...
 
16.
Gallo A., Giuberti G., Masoero F., 2016. Gas production and starch degradability of corn and barley meals differing in mean particle size. J. Dairy Sci. 99, 4347–4359, https://doi.org/10.3168/jds.20...
 
17.
Galo E., Emanuele S.M., Sniffen C.J., White J.H., Knapp J.R., 2003. Effects of a polymer-coated urea product on nitrogen metabolism in lactating Holstein dairy cattle. J. Dairy Sci. 86, 2154–2162, https://doi.org/10.3168/jds.S0...
 
18.
Getachew G., Makkar H.P.S., Becker K., 2002. Tropical browses: contents of phenolic compounds, in vitro gas production and stoichiometric relationship between short chain fatty acid and in vitro gas production. J. Agric. Sci. 139, 341–352, https://doi.org/10.1017/S00218...
 
19.
Guedes L.F., Primo T.S., Vasconcelos Â.M.D., Pompeu R.C.F.F., Neiva J.N.M., Costa C.D.S., Oliveira D.D.S., Rogério M.C.P., 2020. Ingestive behavior, ruminal and blood kinetics in lambs fed cow cheese whey. Rev. Bras. Saúde Prod. Anim. 21, https://doi.org/10.1590/S1519-...
 
20.
Hess H.D., Beuret R.A., Lötscher M., Hindrichsen I.K., Machmüller A., Carulla J.E., Lascano C.E., Kreuzer M., 2004. Ruminal fermentation, methanogenesis and nitrogen utilization of sheep receiving tropical grass hay-concentrate diets offered with Sapindus saponaria fruits and Cratylia argentea foliage. Anim. Sci. 79, 177–189, https://doi.org/10.1017/S13577...
 
21.
Inostroza J.F., Shaver R.D., Cabrera V.E., Tricárico J.M., 2010. Effect of diets containing a controlled-release urea product on milk yield, milk composition, and milk component yields in commercial Wisconsin dairy herds and economic implications. Prof. Anim. Sci. 26, 175–180, https://doi.org/10.15232/S1080...
 
22.
Jeong C.-D., Mamuad L.L., Ko J.Y., Sung H.G., Park K.K., Lee Y.K., Lee S.-S., 2016. Rumen fermentation and performance of Hanwoo steers fed total mixed ration with Korean rice wine residue. J. Anim. Sci. Technol. 58, 4, https://doi.org/10.1186/s40781...
 
23.
Jouany J.-P., 1996. Effect of rumen protozoa on nitrogen utilization by ruminants. J. Nut. 126, 1335S–1346S, https://doi.org/10.1093/jn/126...
 
24.
Joysowal M., Tyagi A.K., Tyagi N., Kumar S., Keshri A., Singh D., 2019. Use of slow release ammonia products in ruminant diet: a review. J. Entomol. Zool. Stud. 7, 882–888
 
25.
Kertz A.F., 2010. Urea feeding to dairy cattle: a historical perspective and review. Prof. Anim. Sci. 26, 257–272, https://doi.org/10.15232/S1080...
 
26.
Khajehdizaj F.P., Taghizadeh A., Nobari B.B., 2014. Effect of feeding microwave irradiated sorghum grain on nutrient utilization, rumen fermentation and serum metabolites in sheep. Livest. Sci. 167, 161–170, https://doi.org/10.1016/j.livs...
 
27.
Kim S.W., Less J.F., Wang L., Yan T., Kiron V., Kaushik S.J., Lei X.G., 2019. Meeting global feed protein demand: challenge, opportunity, and strategy. Annu. Rev. Anim. Biosci. 7, 221–243, https://doi.org/10.1146/annure...
 
28.
Lee S.B., Lee K.W., Lee J.S., Kim K.H., Lee H.G., 2019. Impacts of whey protein on starch digestion in rumen and small intestine of steers. J. Anim. Sci. Technol. 61, 98–108, https://doi.org/10.5187/jast.2...
 
29.
Mahmoudi-Abyane M., Alipour D., Moghimi H.R., 2018. Effect of using different sources of nitrogen on digestibility and nitrogen balance in Mehraban male lambs (in Persian). Anim. Prod. Res. 6, 27–38, https://doi.org/10.22124/AR.20...
 
30.
Markham R., 1942. A steam distillation apparatus suitable for micro-Kjeldahl analysis. Biochem. J. 36, 790–791, https://doi.org/10.1042/bj0360...
 
31.
McDougall E., 1948. Studies on ruminant saliva. 1. The composition and output of sheep's saliva. Biochem. J. 43, 99–109
 
32.
Menke K.H., Raab L., Salewski A., Steingass H., Fritz D., Schneider W., 1979. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. 93, 217–222, https://doi.org/10.1017/S00218...
 
33.
Menke K.H., Steingass H., 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28, 7–55
 
34.
Merry R.J., Smith R.H., McAllan A.B., 1982. Glycosyl ureides in ruminant nutrition: 1. Preparation and estimation of lactosyl urea and other glycosyl ureides. Br. J. Nutr. 48, 275–286, https://doi.org/10.1079/BJN198...
 
35.
Nolan J., Lynch J., Provenza F., Thwaites C., 1993. Do excessive intakes of urea cause conditioned food aversions. In: D.J. Farrell (Editor). Recent advances in animal nutrition in Australia –1993. University of New England Publishing Unit. Armidale (Australia), pp. 129–135
 
36.
NRC (National Research Council), 2001. Nutrient requirements of dairy cattle. 17th Revised Edition. The National Academy Press. Washington, DC (USA), https://doi.org/10.17226/9825
 
37.
Orpin C.G., 1984. The role of ciliate protozoa and fungi in the rumen digestion of plant cell walls. Anim. Feed Sci. Technol. 10, 121–143, https://doi.org/10.1016/0377-8...
 
38.
Palangi V., Macit M., Nadaroglu H., Taghizadeh A., 2022. Effects of green-synthesized CuO and ZnO nanoparticles on ruminal mitigation of methane emission to the enhancement of the cleaner environment. Biomass Convers. Biorefin. https://doi.org/10.1007/s13399...
 
39.
Pavlidis G., Tsihrintzis V.A., 2018. Environmental benefits and control of pollution to surface water and groundwater by agroforestry systems: a review. Water Resour. Manag. 32, 1–29, https://doi.org/10.1007/s11269...
 
40.
Pinos-Rodríguez J.M., Peña L.Y., González-Muñoz S.S., Bárcena R., Salem A., 2010. Effects of a slow-release coated urea product on growth performance and ruminal fermentation in beef steers. Ital. J. Anim. Sci. 9, e4, https://doi.org/10.4081/ijas.2...
 
41.
Rocha J.M., Guerra A., 2020. On the valorization of lactose and its derivatives from cheese whey as a dairy industry by-product: an overview. Eur. Food Res. Technol. 246, 2161–2174, https://doi.org/10.1007/s00217...
 
42.
Sevim Ö., Önol A.G., 2019. Supplemental slow-release urea and non-structural carbohydrates: effect on digestibility and some rumen parameters of sheep and goats. J. Anim. Plant Sci. 29, 1–7
 
43.
Sharifi M., Taghizadeh A., Hosseinkhani A., Mohammadzadeh H., Palangi V., Macit M., Salem A.Z.M., Abachi S., 2022. Nitrate supplementation at two forage levels in dairy cows feeding: milk production and composition, fatty acid profiles, blood metabolites, ruminal fermentation, and hydrogen sink. Ann. Anim. Sci. 22, 711–722, https://doi.org/10.2478/aoas-2...
 
44.
Shirmohammadi S., Taghizadeh A., Hosseinkhani A., Moghaddam G.A., Salem A.Z., Pliego A.B., 2020. Ruminal and post‐ruminal barley grain digestion and starch granule morphology under three heat methods. Ann. Appl. Biol. 178, 508–518, https://doi.org/10.1111/aab.12...
 
45.
Sinclair L.A., Blake C.W., Griffin P., Jones G.H., 2012. The partial replacement of soyabean meal and rapeseed meal with feed grade urea or a slow-release urea and its effect on the performance, metabolism and digestibility in dairy cows. Animal 6, 920–927, https://doi.org/10.1017/S17517...
 
46.
Takahashi J., Mwenya B., Santoso B., Sar C., Umetsu K., Kishimoto T., Nishizaki K., Kimura K., Hamamoto O., 2005. Mitigation of methane emission and energy recycling in animal agricultural systems. Asian-Australas. J. Anim. Sci. 18, 1199–1208, https://doi.org/10.5713/ajas.2...
 
47.
Tan P., Liu H., Zhao J. et al., 2021. Amino acids metabolism by rumen microorganisms: nutrition and ecology strategies to reduce nitrogen emissions from the inside to the outside. Sci. Total Environ. 800, 149596, https://doi.org/10.1016/j.scit...
 
48.
Taylor-Edwards C.C., Elam N.A., Kitts S.E., McLeod K.R., Axe D.E., Vanzant E.S., Kristensen N.B., Harmon D.L., 2009. Influence of slow-release urea on nitrogen balance and portal-drained visceral nutrient flux in beef steers. J. Anim. Sci. 87, 209–221, https://doi.org/10.2527/jas.20...
 
49.
Torkashvand Y., Nezamedost M., 2009. Lactosul urea production from whey in order to use amount increasing of urea and lactose in animal nutrition (in Persian). Iranian Anim. Sci. Res. J. 8, 41–46
 
50.
Van Soest P.V., Robertson J.B., Lewis B.A., 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597, https://doi.org/10.3168/jds.S0...
 
51.
VandeHaar M.J., St-Pierre N., 2006. Major advances in nutrition: relevance to the sustainability of the dairy industry. J. Dairy Sci. 89, 1280–1291, https://doi.org/10.3168/jds.S0...
 
52.
Virtanen A.I., 1966. Milk production of cows on protein-free feed. Science 153, 1603–1614, https://doi.org/10.1126/scienc...
 
53.
Wang Y., Ramirez-Bribiesca J., Yanke L.J., Tsang A., McAllister T.A., 2012. Effect of exogenous fibrolytic enzyme application on the microbial attachment and digestion of barley straw in vitro. Asian-Australas. J. Anim. Sci. 25, 66–74, https://doi.org/10.5713/ajas.2...
 
54.
Xin H.S., Schaefer D.M., Liu Q.P., Axe D.E., Meng Q.X., 2010. Effects of polyurethane coated urea supplement on in vitro ruminal fermentation, ammonia release dynamics and lactating performance of Holstein dairy cows fed a steam-flaked corn-based diet. Asian-Australas. J. Anim. Sci. 23, 491–500, https://doi.org/10.5713/ajas.2...
 
55.
Yuste S., Amanzougarene Z., de la Fuente G., de Vega A., Fondevila M., 2019. Rumen protozoal dynamics during the transition from milk/grass to high-concentrate based diet in beef calves as affected by the addition of tannins or medium-chain fatty acids. Anim. Feed Sci. Technol. 257, 114273, https://doi.org/10.1016/j.anif...
 
56.
Zhang S., Yang Y., Gao B., Wan Y., Li Y.C., Zhao C., 2016. Bio-based interpenetrating network polymer composites from locust sawdust as coating material for environmentally friendly controlled-release urea fertilizers. J. Agric. Food Chem. 64, 5692–5700, https://doi.org/10.1021/acs.ja...
 
 
CITATIONS (2):
1.
Bioconversion of green algae Ulva lactuca biomass with Saccharomyces cerevisiae yeast and exogenous fibrolytic enzymes into suitable ruminant feed
Khalil Abid, Hela Yaich, Jihene Jabri, Atef Malek, Jamel Rekhis, Mohamed Kamoun
Biomass Conversion and Biorefinery
 
2.
Growth traits, hematological, and ruminal fluid profile of sheep offered ensiled coffee skin replacing dried water spinach
Amam Amam, Mochammad Jadmiko, Pradiptya Harsita, Osfar Sjofjan, Danung Adli
Veterinary World
 
ISSN:1230-1388
Journals System - logo
Scroll to top