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Introduction

Sunflower (Helianthus annuus) meal (SFM) is 
by-product of oil extraction from the seeds of sun-
flower, rich in protein and used for feeding farm ani-
mals (Senkoylu and Dale, 1999). Nutritional quality 
of SFM may vary depending on the proportion of 
hulls and oils (Ravindran and Blair, 1992; Senkoylu 
and Dale, 1999). It is comparatively cheap source 
meeting the protein requirement of farm animals. 
However, feed industry occasionally needs rapid, 

non-destructive, inexpensive and reliable methods 
determining nutritional quality of SFM products 
to replace the expensive wet-chemistry methods of 
analysis. 

Attenuated total reflectance (ATR) Fourier 
transform (FT) infrared (IR) spectral measurement 
is a  fast, non-destructive and inexpensive method, 
widely used to determine chemical structural chang-
es as well as nutrient contents over a range of food- 
and feeding-stuffs (Wilson and Belton, 1988; Sivam 
et al., 2013). Near infrared (NIR) spectroscopy has 
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been also used to predict nutritional profiles in feed-
ing-stuffs including SFM (Lindberg and Kaila, 1980; 
Hódsági et  al., 2012). Till now, prediction of nutri-
ent contents of SFM by ATR-FTIR spectroscopy has 
not been reported yet. Quantification of nutritional 
composition as well as molecular structures of vari-
ous food and feed materials by multivariate analysis 
combined with FTIR spectroscopy was presented in 
several studies, and a partial least square regression 
(PLSR) has been effectively used (Wilson and Bel-
ton, 1988; Ścibisz et al., 2011; Samadi et al., 2013;  
Li et  al., 2015). On the other hand, some variabil-
ity in spectra measurements caused by instrumental 
settings, particle size and environmental conditions 
may lower predictive abilities of a PLSR model. For 
instance, the ability of model to predict the contents 
of lignin and holo-cellulose of wood samples high in 
ash content was found weak due to many overlapped 
bands at the region of inorganic matter (Pizzo et al., 
2015). SFM has high levels of ash (up to 70 g/kg) and 
fibrous matter (up to 300 g/kg). To separate out these 
overlapped regions, a  non-absorbent and transpar-
ent crystal matrix such as potassium chloride (KCl), 
can be used to spike such samples prior to IR spectra 
measurements (Theodoridou and Yu, 2013), and this 
was also used for the samples of liquid or gas states 
(Jensen et al., 1998; Xu et al., 2018). KCl spiking has 
another advantage in FTIR studies: the nutrient con-
tents of the SFM samples can be diluted to produce 
a range of concentrations in order to improve the cali-
bration models by the increased method’s precision 
and accuracy. In general, original IR spectra yield has 
too broad band at specific regions (water to protein / 
cellulose to ash). Fine details of overlapped IR re-
gions can be discovered by first (D’) or second (D’’) 
derivatives of original IR spectra subjected to data 
processing such as normalisation by the highest peak 
(NORM) and smoothing (SMOOT) (Steiner et  al., 
1972; Wolkers et al., 1998; Yang and Yen, 2002). The 
effects of such treatments of IR spectra  are tested in 
our study. Furthermore, a test of multiplicative scat-
ter correction (MSC) has been successfully applied to 
the mean-centred IR spectra in order to prevent any 
left-over multiplicative and additive effects associ-
ated with instrumental, sample and environmental re-
lated conditions during the measurements (Isaksson 
and Næs, 1988; Windig et al., 2008; Li et al., 2015).

Therefore, the aim of this study was to reduce 
external and internal variability in IR spectra 
measurement by corrective actions of KCl spiking. 
For this purpose, PLSR models employing original, 
first and second derivate IR data were evaluated on 
the basis of: the number of components explaining 

the total variance (COMP), a  residual sum of 
squares of cross-validation (RESSCV), a  residual 
mean square error of cross-validation (RMSECV), 
a standard error of cross validation (SECV), a ratio 
of performance to the prediction (RPD), regression 
coefficients of both calibration (R2) and cross 
validation (r2) as well as the precision and accuracy 
of the method. 

Material and methods
In the study, three SFM samples were obtained 

from a feed mill in Tekirdag (Turkey). The labora-
tory of the provider confirmed three SFM samples 
differed in crude protein (CP) contents, and iden-
tified as: A  – SFM with 36% CP, B  – SFM with 
34% CP and C – SFM with 28% CP. The contents 
of CP, crude ash (CA), dry matter (DM) and crude 
fibre (CF) were chemically re-analysed and cross- 
validated by our own laboratory using the official 
method of analysis (AOAC, 1990). SFM samples 
used in the study contained high levels of CF (up 
to 25%) and CA (up to 6%). In order to reduce the 
effects of high levels of CF and CA interfering with 
IR spectra, the nutrient contents of sample C was 
diluted by KCl spiking at different levels. This in-
tervention also provided SFM with various concen-
trations of nutrients, useful in the calibration of the 
PLSR models. A non-absorbent and transparent ma-
trix, KCl, was used to spike the sample C contain-
ing 28% of CP, 6% CA and 25% CF. The sample 
C was replaced by the KCl (w/w) at 0 (C sample, 
itself), 27.5 (C1), 57 (C2), 85 (C3) and 100%  
(C4, pure KCl), whereas the A, B and C samples 
remained non-spiked.

In total, 7  SFM samples were homogenously 
ground by a drum mill (Drum-Mill TM 300, Retsch 
GmbH, Haan, Germany) to reach a final particle size 
of <20 µm in order to allow sufficient energy pass 
through the sample during IR measurements. The 
samples of SFM obtained from the feed mill were 
carefully sampled from the bunkers into a 5 kg ho-
mogenous samples. Homogenous samples were di-
vided into 20 replicate samples at our laboratory and 
dried. The samples were independently analysed for 
the contents of DM, CA, CP and CF according to 
AOAC methods (AOAC, 1990).

Prior to IR measurements, the samples were 
completely dried out (Yang et al., 2005), and 20 IR 
measurements were taken from each of 7 samples. 
All spectra were collected on Agilent Carry 630 
FTIR spectrometer with single bounce diamond 
ATR sampling accessory to ensure highest quality
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of spectra (Agilent Technologies Inc., Danbury, CT, 
USA) at 4 cm−1 resolution in the spectral range of 
4000 to 700 cm−1. Each IR measurements included 
64  scans which were co-added and corrected for 
a  background spectrum simultaneously. For each 
SFM, all original 20 IR spectra chosen from the band 
of 3575  to 880  cm−1 (non-meaningful bands from 
2250 to 1900 cm−1 and of >3575 and of <880 cm−1 
were cut out) were subjected to first (D’) and second 
derivate (D’’). All spectra were consecutively 
subjected to NORM process by re-scaling according 
to the highest peak of the region, SMOOT with 9-point 
used without distorting the peak location and height, 
and MSC treatments. The data set of 140  spectra, 
20  from each of 7  feed samples, was randomly 
introduced to three PLSR models based on original 
(model 1), first  – D’ (model 2) and second  – D’’ 
(model 3) derivate spectra in two parts using Minitab 
statistical programme (Minitab® 17.1.0, Minitab 
Inc., Coventry, UK). A calibration model was based 
on the first part (n = 95) after excluding 3 outliers, 
whilst the cross-validation was on the second part 

(n  =  42 as unknown) using a  leave-one-out cross 
validation and predicting as unknown samples.  
This continues until a  minimum RESSCV and 
RMSECV were found. The model was then applied 
to the cross validation data set to predict the nutrient 
concentrations of 7 SFM samples. The  SECV was 
then estimated. The RPD was also calculated; 
the values higher than 2 were considered as good 

predictive indicator (Williams and Sobering, 
1993; Torres Mariani et al., 2015). In addition, the 
accuracy calculated as the difference of predicted 
values and the actual values, the standard deviation 
(SD) of prediction as a  measure of precision 
within the same sample, R2 and r2 were estimated 
and compared between three models (1, 2 and 3) 
generated from original, first (D’) and second 
derivate (D’’) spectra data. 

Results and discussion

Original, D’ and D’’ IR spectra are shown in 
Figure 1. It was noted that the number of bands was 
equal to the derivative order number plus one with 
the change of spectra from the negative slope to the 
positive slope. Increasing degree of derivatisation 
has been reported to result in more distinguishable 
derivatives (Whitaker and Pigford, 1960; Morrey, 
1968). The studies reported better prediction 
parameters with the models using D’’ spectra than 
the models using original and D’ spectra (Isaksson and 

Næs, 1988; Windig et al., 2008; Zhang et al., 2015).  
Similarly, we found that the D’’ spectra data 
was also capable of establishing a  strong linear 
relationship between the chemical composition and 
the peaks over the IR band region (from 3500  to 
800  cm−1). Herein, the performance characteristics 
of our PLSR models were presented and  
discussed. 

Figure 1. Original (left), D’ (middle) and D’’ (right) of IR spectra (over 3500 to 800 cm−1 band region) of SFM samples differing in nutrient contents.
Samples: A, B and C indicate the SFM with 36, 34 and 28% CP contents, C1, C2 and C3 indicate the spiking levels with KCl at 27.5, 57.0 and 
85.0%, respectively, and C4 is the IR spectra of the pure sample of KCl.
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In terms of performance parameters, the  
model 1 (original spectra) enabled to explain 
99.66% of variance by 7  components, while the 
model 2 (first derivate) explained 82.88% of vari-
ance by 4  components, and the model 3 (second 
derivate) explained 86.54% of variance by 9 com-
ponents (Table 1). All models explained sufficient 
amount of variance. But, the model 3 produced 
the lowest values of RESSCV (33.08 for DM and 
121.20 for CA) and RMSECV (0.66 for DM and 
1.30 for CA). The model 1 produced a middle range 
of value for RESSCV (7.73 for CA and 591.42 for 
CP) and RMSECV (0.59 for CA and 1.93 for DM) 
values, while the model 2 has the highest RESSCV 
(18.43 for CA  and 1096.21 for CP) and RMSECV 
(0.71 for CA  and 1.77 for CP) values. The high-
est R2 value (0.99) was obtained from the model 3 in 
comparison to the values of model 1 (0.92–0.98) and 
model 2 (0.91–0.95). The model with higher r2 values 
can be a good model. Apparently, the highest r2 val-
ues were obtained from the model 3 (0.94 to 0.96) as 
compared to the r2 values of model 1 (0.85 to 0.96) 
and model 2 (0.80 to 0.92). Similar prediction param-
eters were previously reported with the D’’ of spec-
tra data (Zhang et al., 2015). This is simply due to 
‘the more distinguishable peaks extracted by second 
derivatisation process the lower random errors into  
a calibration model’ (Bjørsvik and Martens, 2007). 

The chemical analysis of SFM samples is pre-
sented in Tables 2 and 3. Spiking C sample with 
KCl produced a good range of nutrient concentra-

tions. The respected models derived from the PLSR 
analysis which regressed the absorbance peaks over 
IR spectra ranging from 3500 to 800 cm−1 with the 
concentrations of nutrients in SFM produced the 
following prediction equations:

Y = b0 + b1X1 + b2X2 +...+ bpXp,
where: Y  – concentration of nutrient; b0  – regres-
sion coefficient for the intercept; bi – regression co-
efficients (for variables 1 through p) computed from 
the absorbance peaks over a IR spectra (2350 points) 
ranging from 3500 to 800 cm−1. For the sake of clar-
ity, herein the equations for the entire grading range 
under study were summarised in the following linear 
regression equations derived from regressing the pre-
dicted values with the analysed values. 

Equations of the model 1 using original, D’ and 
D’’ spectra data predicting DM of SFM were as fol-
lows: 
y = 0.8192x + 16.594 and R² =  0.7936 (original), 
y  = 0.8274x  +15.903 and R²  =  0.8698 (D’), and  
y  = 1.0616x − 5.6395 and R²  = 0.972 (D’’), respec-
tively.

Equations of the model 1 using original, D’ 
and D’’ spectra data predicting CA of SFM were as 
follows: 
y  =  0.9249x  +  0.4427 and R²  =  0.9125 (original), 
y  =  0.8611x  +  0.7602 and R²  =  0.8801 (D’), and  
y  =  0.7692x −1.1778 and R² = 0.7476 (D’’), respec-
tively. 

Equations of the model 1 using original, D’ and 
D’’ spectra data predicting CP of SFM were as follows: 
y =  0.9194x + 2.4008   and R² = 0.8639 (original), 
y  =  0.9083x  +  2.6542  and R²  =  0.9334 (D’), and  
y =   0.9566x −1.4304 and R² = 0.9867 (D’’), respec-
tively.

Equations of the model 1 using original, D’ and 
D’’ spectra data predicting CF of SFM were as follows:
y  =  0.8415x  +  3.5966 and R²  =  0.7912 (original), 
y  =  0.8387x  +  3.4953 and R²  =  0.8680 (D’), and  
y  =      0.8845x  −    2.7486 and R² = 0.9270 (D’’), respec-
tively.

Tables 2 and 3 showed the results of the predict-
ed means by PLSR models. In the light of SECV, 
RPD, precision and accuracy values (Table 2),  
the model 3 has a highest predictive ability for DM 
contents than the models 1 and 2. The regression co-
efficients of R2 and r2 of 0.99 and 0.95 of the model 
3 were higher than the corresponding coefficient 
values of 0.92 and 0.85 of the model 1, and 0.90 
and 0.80 of the model 2 (Table 1). Furthermore, 
these values were well lined up with other param-
eters. Namely, the RMSECV and RESSCV values 
presented in Table 1 were gradually lowered by 

Table  1. The power of partial least square regression (PLSR) mod-
els used to predict nutrient contents from the absorbance peaks over  
a infrared IR spectral range from 3500 to 800 cm−1 (97 data sets used in 
the calibration stage, 42 data sets in the cross validation stage, 3 outliers)

Models Nutrients COMP V, % RESSCV RMSECV R2 r2

Original DM 7 99.66 105.71 1.93 0.91 0.80
(model 1) CA 7.83 0.59 0.98 0.96

CP 591.42 1.78 0.95 0.93
CF 465.23 1.50 0.95 0.89

D’ DM 4 82.88 141.94 1.12 0.92 0.85
(model 2) CA 18.43 0.71 0.95 0.92

CP 1096.21 1.77 0.95 0.87
CF 660.63 1.71 0.92 0.85

D’’ DM 9 86.54 33.08 0.66 0.99 0.95
(model 3) CA 121.20 1.30 0.99 0.94

CP 339.19 0.99 0.99 0.94
CF 185.56 0.90 0.99 0.96

PLSR analysis of variance of DM  – dry matter, CA  – crude ash,  
CP – crude protein and CF – crude fibre were significant at P < 0.000; 
COMP  – the number of components; V  – the percentage of total 
variance explained by the components; RESSCV – residual sum of 
squares of cross-validation; RMSECV – residual mean square error 
of cross-validation
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the PLSR model 3, compared to the PLSR models  
of 1 and 3, respectively (Table 2). As shown in  
Table 2, the highest RPD (3.21 to 3.26) for DM pre-
diction of non-spiked SFM samples were obtained 
from the PLSR model 3, compared the RPD values 
from the model 1 (1.56 to 1.67) and model 2 (1.41 
to 1.75). Spiking SFM sample with KCl at a rate of 

27.5% (sample C1) improved the predictive abilities 
of all PLSR models for DM contents. The RPD val-
ues in all models were improved by nearly 2-fold by 
27.5% KCl spiking. The RPD values of other spiked 
levels were out range of the prediction. In other 
words, further spiking with KCl >27% did not im-
prove, but worsened the predictive ability for the DM.  

Table 3. Predictive abilities of partial least square regression (PLSR) 
models for the percentage (%) of crude protein (CP) and crude fibre 
(CF) in sunflower meal (SFM) from the absorbance peaks over a infra-
red (IR) spectral range from 3500 to 800 cm−1

Indices Non-spiked SFM samples1 C sample spiked with KCl1
A B C C1 C2 C3 C4

CP analysed values
mean, % 36.03 34.07 28.02 20.1 12.00 4.03 0.0
SD, % 1.05 1.07 1.04 1.01 0.90 0.02 0.0

Predicted values by the model 1 using original spectra data
mean, % 31.04 36.32 30.15 22.76 8.86 14.67 −3.57
SD, % 1.37 1.24 1.12 1.66 3.07 3.02 3.80
SECV 0.79 0.97 0.78 1.06 1.68 3.14 1.41
RPD 1.32 1.10 1.33 0.95 0.53 0.006 0.00

Predicted values by the model 2 using D’ spectra data
mean, % 33.78 37.8 24.84 22.27 10.15 11.18 0.50
SD, % 3.23 1.90 1.57 1.41 0.71 6.33 1.19
SECV 0.78 0.97 0.60 0.83 0.83 1.09 1.00
RPD 1.34 1.10 1.77 1.21 1.08 0.018 0.00

Predicted values by the model 3 using D’’ spectra data
mean, % 35.76 35.82 26.25 20.52 12.25 7.71 0.12
SD, % 2.31 1.23 0.57 1.00 0.71 1.34 1.22
SECV 0.33 0.37 0.33 0.32 0.31 1.123 0.38
RPD 3.18 2.89 3.15 3.15 3.00 0.01 0.00

CF analysed values
mean, % 21.22 23.30 25.30 18.48 10.97 3.83 0.0
SD, % 1.01 1.02 1.00 0.90 0.50 0.04 0.0

Predicted values by the model 1 using original spectra data
mean, % 22.67 24.65 22.60 19.02 10.11 14.81 −1.92
SD, % 0.59 0.63 0.66 0.74 2.00 2.86 2.13
SECV 0.28 0.32 0.27 0.26 0.25 0.92 0.31
RPD 3.67 3.18 3.73 3.46 2.00 0.04 0.00

Predicted values by the model 2 using D’ spectra data
mean, % 24.31 25.05 20.10 19.70 10.68 10.61 0.49
SD, % 2.09 1.34 1.42 1.04 0.52 4.19 0.59
SECV 0.66 0.90 0.60 0.78 0.77 1.03 0.93
RPD 1.53 1.13 1.70 1.28 0.65 0,04 0.00

Predicted values by the model 3 using D’’ spectra data
mean, % 23.28 22.86 23.4 20.08 10.98 10.25 −0.42
SD, % 1.11 0.21 0.72 0.21 0.33 1.14 1.63
SECV 0.28 0.32 0.27 0.26 0.25 0.92 0.31
RPD 3.60 3.18 3.70 3.46 2.00 0.04 0.00

1  sunflower meal samples: A (SFM-36-CP), B (SFM-34-CP),  
C (SFM-28-CP), C1 (C spiked with KCl at 27.5%), C2 (C spiked 
with KCl at 57%), C3 (C spiked with KCl at 85%) and C4 (pure KCl); 
SD – standard deviation; SECV – standard error of cross validation; 
RPD  – a  ratio of performance to the prediction; D’  – first derivate; 
D’’ – second derivate

Table 2. Predictive abilities of partial least square regression (PLSR) 
models for dry matter (DM) and crude ash (CA) content in sunflower 
meal (SFM) from the absorbance peaks over a infrared (IR) spectral 
range from 3500 to 800 cm−1

Indices Non-spiked SFM samples1 Sample C spiked with KCl1
A B C C1 C2 C3 C4

DM analysed values
mean, % 88.84 91.37 90.61 92.94 96.13 99.00 99.23
SD, % 0.49 0.55 0.45 0.89 0.18 0.36 0.07

Predicted values by the model 1 using original spectra data
mean, % 90.69 89.57 90.87 92.40 96.40 95.19 100.17
SD, % 0.332 0.299 0.302 0.355 0.66 0.87 0.21
SECV 0.292 0.358 0.287 0.392 0.618 1.160 0.521
RPD 1.67 1.53 1.56 2.27 0.29 0.310 0.00

Predicted values by the model 2 using D’ spectra data
mean, % 90.01 89.36 92.1 92.53 96.12 96.44 99.30
SD, % 0.86 0.53 0.51 0.40 0.22 1.52 0.27
SECV 0.28 0.39 0.26 0.33 0.33 0.53 0.40
RPD 1.75 1.41 1.73 2.69 0.54 0.68 0.17

Predicted values by the model 3 using D’’ spectra data
mean, % 89.10 90.70 90.96 92.80 95.84 100.76 99.00
SD, % 0.84 0.45 0.33 0.20 0.14 1.50 0.21
SECV 0.15 0.17 0.14 0.14 0.14 0.49 0.16
RPD 3.26 3.23 3.21 6.35 1.00 0.73 0.00

CA analysed values
mean, % 4.99 6.06 4.86 4.52 3.30 0.90 0.0
SD, % 0.50 0.30 0.62 0.20 0.89 0.30 0.0

Predicted values by the model 1 using original spectra data
mean, % 5.28 5.80 5.27 4.56 2.90 2.42 −0.35
SD, % 0.17 0.10 0.07 0.14 0.20 0.34 0.54
SECV 0.088 0.10 0.086 0.11 0.18 0.350 0.15
RPD 6.25 3.00 7.20 1.81 4.94 0.46 0.00

Predicted values by the model 2 using D’ spectra data
mean, % 5.73 5.93 4.77 4.67 2.60 2.66 0.17
SD, % 0.48 0.30 0.31 0.23 0.11 0.98 0.14
SECV 0.12 0.15 0.10 0.13 0.13 0.17 0.16
RPD 4.16 2.00 6.20 1.53 6.84 1.76 0.00

Predicted values by the model 3 using D’’ spectra data
mean, % 5.14 6.02 4.75 4.55 3.05 3.83 −0.15
SD, % 0.16 0.08 0.23 0.12 0.11 1.00 0.42
SECV 0.086 0.090 0.076 0.075 0.073 0.263 0.087
RPD 5.81 3.33 8.18 2.66 12.2 1.14 0.00

1  sunflower meal samples: A (SFM-36-CP), B (SFM-34-CP),  
C (SFM-28-CP), C1 (C spiked with KCl at 27.5%), C2 (C spiked 
with KCl at 57%), C3 (C spiked with KCl at 85%) and C4 (pure KCl); 
SD – standard deviation; SECV – standard error of cross validation;  
RPD  – a  ratio of performance to the prediction; D’  – first derivate; 
D’’ – second derivate
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In contrary, the calculated precision and accuracy val-
ues in Figure 2 revealed that the spiking levels of 27.5 
and 57% (samples C1 and C2) were found to have  
a great improvement effect on the prediction abilities 
of all models, whilst there was no effect of spiking at 
85%. 

The models, the best model for the CA prediction 
of non-spiked samples was the model 3, from 
which the lowest SECV, RESSCV and RMSECV 

values and the highest R2, r2 and RPD values were 
obtained (Table 2). However, both the model 1 and 2 
performed better for the CA than the DM, CP and CF. 
As overall, the SECV and RPD values were too low 
in three models for the CA in comparison to the values 
obtained from the non-spiked samples, except the 
fact that the RPD value of the spiked sample at 57% 
of KCl was significantly higher than the remaining 
spiked and non-spiked samples in all models. 

Figure 2. Precision (error of the prediction) and accuracy (refers to the closeness which must be ‘0’ if the predicted value is the same as analysed 
value) of three partial least square regression (PLSR) models for (A) dry matter (DM), (B) crude ash (CA), (C) crude protein (CP) and (D) crude 
fibre (CF) (each data point represents the mean with standard error of prediction calculated from n = 20 spectra analysis of each sample)
Samples: A, B and C indicate the sunflower meal (SFM) samples with 36, 34 and 28% crude protein contents; C1, C2 and C3 indicate the spiking 
levels with KCl at 27.5, 57 and 85%, respectively; and C4 is the infrared (IR) spectra of the pure sample of KCl
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On the other hand, the results of precision and 
accuracy values of three models to predict CA in 
spiked samples clearly indicated that the spiking 
at 27.5% has a  significant effect to improve the 
prediction abilities of all models, while the other 
spiking levels had no observed effect. 

For the prediction of CP, the model 3 performed 
better than the model 1 and model 2 (Tables 1 and 
3). The RMSECV value in model 3 was lower than 
the values in models 1 and 2 (0.99 vs 1.78 and 1.77, 
respectively). Similarly, the values of R2 and r2 

of the model 3 were higher than the values of the 
model 1 and model 2 (0.99–0.95 vs 0.95–0.93 and 
0.95–0.87, respectively). The lowest SECV values 
(0.33–1.123) were determined for the model 3 as 
compared to the values of model 1 (0.78–3.14) and 
model 2 (0.60–1.09). The RPD values of the model 1 
and model 2 were significantly lower than the value 
of 2.0, while the RPD values of the model 3 were 
in the range of 2.89 to 3.18 of non-spiked samples. 
More surprisingly, there were no effects of spiking 
on the degree of prediction abilities of all the models 
according to the RPD values given in Table 3. 
However, the Figure 2 shows that only the prediction 
ability of the model 3 was improved by the use of 
spiked samples at 27.5 and 57.0% of KCl, while no 
effects of spiking on the prediction ability were seen 
in the model 1 and model 2. 

For the prediction of CF, the model 3 was found 
significantly better than the model 1 and model 2 
(Tables 1 and 3). The RMSECV value in model 3 
(0.99) was lower than the values in model 1 (1.50) 
and in model 2 (1.71). Higher values of R2 (0.99) and 
r2 (0.94) were found in the model 3 in comparison to 
the values of the model 1 (0.95 and 0.89) and model 
2 (0.92 and 0.85). The SECV values (0.27–0.92) of 
the model 3 were most likely identical to the SECV 
values of model 1 (0.27–0.92), while the SECV val-
ues of the model 2 were higher (0.60–1.03). The 
RPD values of the model 1 and model 3 were higher 
than the value of 3.0, while the RPD values of the 
model 2 was <2.0. The RPD values of spiked sam-
ples in all three models were not changed, but even 
lowered by increasing spiked levels. In contrary, the 
precision and accuracy of all three models were sig-
nificantly improved by the use of spiked samples at 
27.5 and 57.0% of KCl. 

These results indicated that nutrient concentra-
tions of SFM samples were consistently well predict-
ed by the model 3 using second derivate of IR spectra 
data. The prediction parameters of r2 (0.96–0.98) and 
RSECV (1.1–0.18) of CA, CP and CF of the SFM 
samples by the PLSR model using the second deri-

vate of NIR spectra (Perten, 2019) were similar to 
our results. In the study of Mahesar et al. (2011) the 
first derivate of IR spectra data produced an excellent 
PLSR model to predict the fatty acid contents of poul-
try lipids. In that study, the first derivate of IR spectra 
band, specifically assigned to lipid region, was used 
to establish a powerful model, while the models used 
in our study employed the entire IR region. Data 
processing of original IR spectra and their first and 
second derivates have now routinely been used in IR 
spectroscopy studies. Similar to our results, consider-
ably low prediction errors and high correlation coeffi-
cients with PLSR model 3 were observed by Isaksson 
and Næs (1988), Windig et al. (2008), Ribeiro et al. 
(2013), Zhang et  al. (2015) and Hell et  al. (2016). 
Comparing the results of PLSR analysis of NIR and 
FTIR spectra to predict the CA, DM, CP and CF con-
tents of wheat bran high in ash and fibre, FTIR was 
found superior than NIR to predict the level of CP in 
the feed materials; although the NIR predicted better 
CA and crude fibre (CF) contents (Hell et al., 2016). 

Many studies reported that the use of FTIR 
spectra data for nutrient quantification studies would 
provide more information than the use of NIR spectra 
data since the FTIR spectra provide also a chemical 
and molecular structural data (Wilson and Belton, 
1988; Shiroma and Rodriguez-Saona, 2009; Ścibisz 
et al., 2011; Xu et al., 2018). However, both methods 
of prediction were poor to predict soluble dietary 
fibre content. It was also pointed out the difficulty 
of establishment of a good prediction model in such 
food materials (Pizzo et al., 2015). However, spiking 
SFM (high in ash and fibre contents) in KCl gradually 
overcome this problem in our study. Furthermore, 
FTIR spectroscopy detects fundamental molecular 
vibrations as opposed to the overlapping and usually 
weaker combination bands in NIR. The use of KCl 
to spike the SFM sample high in ash and fibre was 
indeed very helpful to enhance the detection of 
molecular vibrations, and thereby to improve the 
predictive abilities of PLSR models, and this was 
also confirmed by previous results (Theodoridou and 
Yu, 2013; Pizzo et al., 2015). 

The model 3 using the second derivate of IR 
spectra data was more robust, having an RPD value 
of >2.5 as well as better precision and accuracy, and 
was the best predicting model for all nutrient con-
tents of SFM samples used in our study. Similar 
results with the model 3 was also reported previously 
(Zhang et al., 2015), but the values of RPD were closely 
related to the values of bias (accuracy), as opposed to 
the values obtained from the spiked SFM samples in 
our study. Accuracy (closeness of the predicted value 
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to the analysed value) and precision (degree of standard 
error in prediction) of the predicted nutrient contents of 
non-spiked SFM samples were consistently better by 
the model 3 than the model 1 and model 2 of PLSR 
in this study. There was a remarkable improvement in 
the precision and accuracy of all three PLS models by 
spiking the SFM sample at the rate of 27.5% for the 
DM and CF determinations, whereas only the level of 
27.5% spiking has an improving effect on the degree 
of precision and accuracy of all the PLSR prediction 
models for the CA determination. In contrary, both the 
level of 27.5 and 57.0% spiking have a great improve-
ment effect on the precision and accuracy of only the 
model 3 for the CP determination in this study. The re-
maining levels of spiking did not affect the precision 
and accuracy of the models used in this study (Figure 
2). Our results demonstrated that the prediction ability 
of methods for nutrient determination can be better es-
timated by the method precision and accuracy values 
than the values of RPD, which are the ratio of the stan-
dard error of performance and the standard deviation 
of analysed data (Williams and Sobering, 1993; Torres 
Mariani et al., 2015). However these values cannot pro-
vide any information on the accurate and precise. Fur-
thermore, there are no close relationship between the 
RPD values and the regression coefficients (R2 and r2) 
of the models. Therefore, the ‘accuracy’ and ‘precision 
in measurement’ must be reported in IR measurements.

Conclusions
The nutritional qualities of sunflower meal 

(SFM) samples are precisely predicted by attenu-
ated total reflectance Fourier transform infrared 
(ATR-FTIR) spectroscopy using second derivate IR 
data in comparison to original and first derivate of 
IR data. What is more, the prediction accuracy of 
nutrient contents was significantly improved by the 
use of KCl as diluent. 
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