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Introduction

There is an increasing global demand for animal 
welfare-friendly farming systems as lack of animal 
welfare is strongly linked to deterioration in the health 
of the animal, performance and meat quality through 
suppressed immune functions and stress (Broom and 
Fraser, 2015). Inappropriate management by farmers 
during handling, such as the presentation of novel 
stimuli, transport, violence and the use of restraints, 
is a strong stressor for farm animals (Grandin, 2007). 
Welfare-friendly management such as the provi-
sion of environmental enrichment or exercise area 
under indoor housing can reduce stress and offer 
certain health benefits to cows (Boissy et al., 2007; 
Von Keyserlingk et al., 2009; Charlton et al., 2011).  

For example, in comparison to positive handling, 
negative handling increases fear of humans in cattle 
and results in increased heart rate and total cortisol 
concentration in the blood (Breuer et al., 2003; Yard-
imci et al., 2013; Lindahl et al., 2016).

In animals, stressors affect the gastric acid secre-
tion and their function resulted from the activation 
balance of sympathetic and parasympathetic nervous 
systems (Murakami et al., 1985; Lenz et al., 1988). 
Heat stress reduces the amount of saliva produced, 
which may impair the rumen functionality of cows 
(Kadzere et al., 2002). Therefore, it is not surprising 
that handling stress-induced changes in the produc-
tion of saliva by ruminant will in turn affect the ru-
men environment and ruminal microflora. Further, 
this alteration of microflora may be detrimental to the 
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digestibility of grass and consequently animal pro-
duction. However, the sequential flow from stress to 
grass digestibility via rumen environment and micro-
flora has not yet been fully understood. We, therefore, 
studied the effect of handling stress on grass hay deg-
radability examined by using a rumen in vitro batch 
culture technique and diversity of microflora in the 
rumen liquid examined by a genetic approach. 

Material and methods
Animal management

The study was conducted at Mie University 
and Mie Prefectural Livestock Research Institute, 
located in central Japan. Suffolk ewes aged be-
tween 5–10 years that had been kept for one month 
in individual pens in the same barn were used. All 
sheep were fed each day 250 g of feed concentrate 
(crude protein 13.0%, ether extract 3.1%, nitrogen-
free extracts 49.9%, crude fibre 22.7%, crude ash 
3.0%) and 500 g of Italian ryegrass hay (crude pro-
tein 5.6%, ether extract 1.3%, nitrogen-free extracts 
48.9%, crude fibre 29.2%, crude ash 5.6%) in the 
morning (8:00–9:00) and evening (15:00–16:00). 
Before feeding, leftover forage in the feeder was re-
moved and weighed for calculation of feed intake.

On each day, sheep were exposed to different 
stress-inducing handling protocols (transportation; 
control in which no action was taken; free grazing; 
combination of novel stimulation and social isolation). 
On the first day, all sheep were transported by truck 
for a total of 5 h. Rumen liquid was extracted twice 
(day and 5 days after transportation except one sheep 
from which rumen liquid was collected 3 and 6 days 
after shipment because of weak animal condition) 
by cannula from the sheep rumen within the first 
week after transportation depending on the condition 
of the sheep (negative handling, ‘NH1’, Figure 1).  

In the second week, the rumen liquid was extracted 
twice (days 3  and 6  in the week) from all sheep 
under no treatment (control). In the third week, all 
sheep were moved from their pens to an open ground 
without plants for free movement and rumen liquid 
was extracted twice (days 3 and 6 in the week) from 
sheep 2  h after the movement (positive handling, 
‘PH’). In the final week every day, all sheep were 
moved to another room in which each sheep was 
kept alone for 2 h with a human in the room scaring 
the sheep by making loud noises without making 
any eye contact with animals. Rumen liquid was 
then extracted twice (days 3 and 6 in the week) from 
the sheep 2 h after the treatment (‘NH2’).

Collection of rumen liquid was done before 
feeding in the morning. It was filtered through 2 lay-
ers of cheesecloth. The rumen liquid was then pre-
pared by the deoxidized method using bubbling CO2 
gas. The pH of the rumen liquid was also recorded.

In vitro degradability measurement of grass 
hay

The degradability of Italian ryegrass hay was 
evaluated using a rumen in vitro batch culture tech-
nique as described by Khan and Chaudhry (2010) 
with the different sources of rumen fluid (stressed 
vs non-stressed sheep) used as treatments. The hay 
was ground to pass through a  1-mm screen, and 
500 mg of the sample was accurately weighed into 
a 30-ml bottle with a butyl rubber stopper and alu-
minium seal. This was anaerobically incubated at 
38  °C for 48  h under the in vitro conditions with 
rumen mixed culture (v/v, 1:4  rumen mixed cul-
ture: McDougall’s buffer solution (9.8 g NaHCO3, 
9.3 g Na2HPO4 × 12 H2O, 0.57 g KC1, 0.47 g NaCl, 
0.12 g MgSO4 × 7 H2O, 0.04 g CaCl2, 1000 ml dis-
tilled water); McDougall, 1948). In total, 32  sam-
ples (4  handling treatments including PH, NH1, 
NH2 and control × 4 sheep × 2 times sampling of 

Figure 1. Time-sequence diagram of experimental periods and rumen liquid sampling time
Handling protocols: NH  – negative handling (NH1  – transporting; NH2  – noising); control  – without any handling treatment; PH  – positive 
handling; * – from one sheep rumen liquid was collected 3 and 6 days after the transportation because the sheep looked weak maybe due to the 
transportation stress
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rumen liquid) were run in three replications and the 
filtered plant sample was collected on a filter paper 
(ADVANTEC, Tokyo, Japan), dried and weighed.

Analysis of rumen microorganisms
The filtered rumen liquid in a  separate funnel 

was left to stand at 39 ℃ for 1 h. The upper part of 
the liquid was separated by centrifuging at 1000 rpm 
for 5 min, and the lower part of the liquid was sep-
arated by centrifuging at 1000  rpm for 5  min and 
12000  rpm for 20 min. The supernatant liquids in 
each centrifugation including protozoa and bacteria 
fractions were collected (Sasaki et al., 2000). Sepa-
rated microorganism fractions underwent a  48  h 
freeze-drying process and were weighed.

Genomic DNA of rumen microorganisms was 
extracted from the samples using a  FavorPrep Soil 
DNA Isolation Mini Kit (Favorgen Biotech Corpo-
ration, Ping-Tung, Taiwan) following the manufac-
turer’s instructions. To amplify the DNA of the two 
groups, PCR primer sets specifically for the V3-4 
hypervariable region of the 16S rRNA gene for 
bacteria (e.g., 5′-ACACTCTTTCCCTACACGAC-
GCTCTTCCGATCT-NNNNNCCTACGGGNG-
GCWGCAG-3′) and the 18S rRNA operon for 
eukaryotes (e.g., ACACTCTTTCCCTACACGAC-
GCTCTTCCGATCTATAACAGGTCTGTGAT-
GCC) were used. The first PCR product was purified 
by Agencourt AMPure XP (Beckman Coulter, Brea, 
CA, USA) and used as the template for the second 
PCR. The second PCR was performed to add comple-
mentary sequences for the oligonucleotides that coat 
the Illumina sequencing flow cell, annealing sites 
of DNA sequencing primers, and indices to the first 
PCR products. These PCR steps were conducted in-
dependently to add individual indices to each sample 
using the common forward and indexed reverse prim-
ers (Suyama and Matsuki, 2015). The second PCR 
product was then purified by Agencourt AMPure XP 
(Beckman Coulter, Brea, CA, USA). The concentra-
tions of each of the second PCR products (libraries) 
were measured using a Reagent Kit Synergy H1 (Bio 
Tek, Winooski, VT, USA) and a QuantiFluor dsDNA 
System (Promega, Madison, WI, USA). The librar-
ies from each sample, each with a  different index, 
were then pooled in equimolar concentrations. Li-
braries were denatured using fresh NaOH (0.2N) and 
mixed with 20% of Illumina-generated PhiX control 
libraries, as per Illumina’s protocols. Approximately 
10 pM of the libraries were used for sequencing on 
an Illumina MiSeq Sequencer using a MiSeq Reagent 
Kit V3 (Illumina, San Diego, CA, USA).

Raw data obtained was processed and analyzed 
using the QIIME pipeline software (version 1.8.0; 
Caporaso et  al., 2010). Merged fastq format data 
was converted to fasta format using fastq to fasta 
software in the fastx_toolkit package. The sequence 
reads with an average quality of <Q20 were re-
moved using Sickle software. High-quality paired-
end reads were assembled using FLASH software. 
Chimeric sequences were removed using Usearch 
V6.1.544 based on the Uchime algorithm (Edgar, 
2010) implemented in QIIME. The clean fasta data 
were aligned into Operational Taxonomic Units 
(OTUs) at 97% similarity using open-reference 
OTU picking against the 16S and 18S databases. 
Taxonomic identification was performed at the phy-
lum and genus levels. Shannon’s diversity index 
was calculated at each level.

A  general linear model with individuals as 
a  random effect was applied to test statistically 
significant differences in rumen pH, degradability 
and the amount of forage intake across stress treat-
ments. Kruskal-Wallis test was applied to compare 
the compositional change of rumen microorganism 
among the treatments (control (n = 8), PH (n = 8), 
NH (n = 16; NH1 + NH2)). Tukey’s post-hoc test 
and Steel-Dwass’s post-hoc test were performed to 
ascertain which treatments varied significantly from 
each other. These analyses were performed with 
Statistica 12 software (Dell Inc., Round Rock, TX, 
USA). All differences among comparisons with P ≤ 
0.05 were considered significant. 

Results and discussion
The daily forage intake of sheep was reduced 

under the negative handling protocols (Figure 2,  
P < 0.001, F = 17.1, df = 2). In vitro grass hay de-
gradability was the greatest under the PH and control 
conditions (P < 0.001, F = 9.50, df = 2). Ruminal pH 
(P = 0.63, F = 0.49, df = 2) and weight of rumen mi-
croorganisms (P = 0.09, F = 3.22, df = 2) did not dif-
fer significantly among the three handling protocols.

The average number of OTUs per PH, control 
and NH treatment detected by the analysis reached 
4098, 46037  and 44840  for bacteria and 10756, 
16876 and 16740  for eukaryotes, respectively. Di-
versity index at OTUs level per PH, control and NH 
treatment were 3.381, 3.373 and 3.293 for bacteria 
and 1.423, 1.483 and 1.289 for eukaryotes, respec-
tively. Changes in phyla as a percentage of total se-
quences in bacterial and eukaryote communities are 
shown in Table 1. Bacteroidetes and Firmicutes were 
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the dominant bacterial phyla in the rumen, regardless 
of handling treatments. However, Proteobacteria was 
also a dominant phylum in the stressed sheep.

Proteobacteria include a wide variety of patho-
gens. Most of the Proteobacteria found from the 
stressed sheep were Acinetobacter. This species 
is an opportunistic pathogen and is also found in 
the rumen of Korean cattle (Chang et al., 2015). In 
contrast, Firmicutes include important cellulolytic 
bacterium in rumen such as Ruminococcus spp.  
(Russell et al., 2009). Ruminococcaceae constituted 
10.7, 11.1  and 6.7% in the rumen bacteria in PH, 
control and NH conditions, respectively. So it may 
be concluded that stressor exposure leads to an over-

growth of negative microorganisms while at the same 
time significantly reducing beneficial microorgan-
isms. Bailey et al. (2010) demonstrated that exposing 
mice to a prolonged restraint stressor led to a signifi-
cant increase in Citrobacter rodentium colonization 
and suggested that the disruption of the microbiota 
increases susceptibility to an enteric pathogen.

Although the microbial community structure of 
PH was clearly separated from the other handling 
treatments, Ciliophora was the main eukaryote 
phylum found in the rumen samples. Among the 
eukaryote community, ciliate protozoa play an im-
portant role in rumen digestion of plant cell walls 
(Ushida and Jouany, 1990). The large difference 

Table 1. Effect of handling protocols on changes in phyla as  
a percentage of total sequences in the rumen bacterial and Eukaryote 
community

Phylum Handling protocol P-valuePH Control NH
Bacteria

Bacteroidetes 51.0 46.7 42.9 NS
Firmicutes 35.7b 40.0b 22.9a <0.05  
Euryarchaeota (Archaea) 2.70 4.30 1.90 NS
TM7 4.10 2.20 2.30 NS
Verrucomicrobia 1.20 1.50 1.40 NS
Actinobacteria 0.60 0.90 0.20 NS
Tenericutes 1.00 0.80 0.30 NS
Proteobacteria 0.60a 0.60a 25.5b <0.01 
Lentisphaerae 0.60 0.50 0.40 NS
Chloroflexi 0.20 0.30 0.20 NS
Cyanobacteria 0.50 0.30 0.30 NS
Planctomycetes 0.20 0.30 0.10 NS
Spirochaetes 0.10 0.10 0.00 NS
WPS-2 0.10 0.10 0.00 NS
Acidobacteria 0.00 0.00 0.00 NS
Armatimonadetes 0.00 0.00 0.00 NS
Elusimicrobia 0.10 0.00 0.00 NS
Fibrobacteres 0.00 0.00 0.00 NS
Fusobacteria 0.00 0.00 0.00 NS
GN02 0.00 0.00 0.00 NS
LD1 0.00 0.00 0.10 NS
SR1 0.10 0.00 0.10 NS
Synergistetes 0.10 0.00 0.00 NS
WS6 0.00 0.00 0.00 NS
Unassigned and others 1.10 1.20 1.30 NS

Eukaryote
Ciliophora 0.11a 0.55b 0.37b <0.01
Apicomplexa 0.18b 0.09ab 0.02a <0.01
Fungi 0.07 0.04 0.02 NS
Charophyta 0.01 0.01 0.03 NS
Parabasalia 0.01 0.01 0.03 NS
Metazoa (Animalia) 0.03a 0.01a 0.11b <0.01
Entamoebida 0.00 0.00 0.00 NS
Unassigned and others 0.59 0.31 0.42 NS

Handling protocols: NH – negative handling (n = 16); control – without 
any handling treatment (n  = 8); PH  – positive handling (n  = 8);  
ab – values with different superscripts within each row are significantly 
different according to Tukey’s post-hoc test (P ≤ 0.05); NS – indicates 
lack of a significant difference

Figure 2.  Forage intake, grass hay degradability, rumen pH and the 
weight of ruminal microorganisms (mean ± standard error) for each 
handling protocol of sheep
Bars with different letters are significantly different according  
to Tukey’s post-hoc test. Handling protocols: NH – negative handling 
(n = 16; NH1 + NH2); control – without any handling treatment (n = 8); 
PH – positive handling (n = 8)
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in ciliophoran phyla between handling treatments 
could be related to the significant change in the rate 
of plant decomposition. However, as more than half 
of the PH sheep samples were assigned as unknown 
or others, it is difficult to come to such a conclusion.

It was found that forage degradability in the 
treatments with more stress was half that of the 
treatments with less stress. The most likely expla-
nation for this impaired rumen functionality is that 
sheep exposed to stress showed different rumen 
flora from the non-stressed ones, presenting an in-
crease in poor functional microorganisms instead 
of highly functional organisms and low diversity of 
rumen organisms. As a result of the fulfilled rumen 
with the undigested forage may lead to a decrease in 
voluntary forage intake. This finding is in accord-
ance with other studies, where ruminal acidosis or 
restraint stress reduced bacterial diversity and al-
tered microflora resulted in indigestion (Mao et al., 
2013; Bailey, 2016). 

Conclusions
Handling stress impairs the ability of the rumen 

to digest hay due to altered rumen microflora. Sheep 
exposed to stress had more potentially pathogenic 
bacteria and fewer cellulolytic bacteria such as Fir-
micutes, as well as their microorganism diversity in 
the rumen was lower. Within the limitation of this 
study (only four animals used), it can be carefully 
concluded that it is important to recognize the po-
tential animal production risks posed by handling 
stress, which has welfare implications for such farm 
animals.
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