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Introduction

The significance of the gut in broiler perfor-
mance and health has gained increasing recognition. 
As the subtherapeutic use of antibiotics in poul-
try rearing has been phased out in various parts of 
the world, there is a  pressing need for alternative 
methods to prevent bacterial infections and enhance 
poultry growth (Giannenas et  al., 2010b). Natural 
medicines derived from herbs and fungi have been 
utilised as feed additives for animals for centuries 

(Guo et  al., 2004). Mushrooms possess immune-
stimulating and growth-promoting properties, par-
tially attributed to their high polysaccharide content, 
which exerts a prebiotic effect (Guo et  al., 2003;  
Giannenas et al., 2010b).

Agaricus blazei Murrill (AB) belongs to 
the family Agaricaceae and is cultivated on an
industrial scale in China and Japan (Hu et al., 2021). 
AB contains many bioactive substances, including 
proteins, polysaccharides, minerals, and vita-
mins (Endo et  al., 2010). AB is widely applied as  
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a  medicinal and functional food due to its phar-
macological properties, such as antimutagenic, 
antimicrobial, antioxidant, lipid-lowering, and 
anticarcinogenic effects (Delmanto et  al., 2001;  
Kuroiwa et al., 2005; Lima et al., 2016; Li et al., 
2020a). 

It has been reported that a  bioactive protein 
derived from AB exhibits pathogen-resistant prop-
erties and shows potential benefits in alleviat-
ing type 2 diabetes and cancer  (Hu et al., 2021).  
AB protein shows a  significant antioxidant effect 
by scavenging oxygen free radicals and improv-
ing antioxidant enzyme activity. Additionally, 
β-glucan and agaritine purified from AB have been 
shown to exhibit anti-tumour activity (Endo et al., 
2010). AB is also rich in polysaccharides, which 
have been proven effective in treating cancer, dia-
betes, hyperlipidaemia, heart disease, arterioscle-
rosis, and chronic hepatitis (Kaneno et  al., 2004; 
Zhai et  al., 2015). An acidic polysaccharide iso-
lated from AB was found to have a hypolipidemic 
effect, significantly reducing serum total cholester-
ol (TC), triglyceride (TG), and low-density lipo-
protein (LDL) cholesterol levels, while increasing 
serum high-density lipoprotein (HDL) cholesterol 
concentration (Li et al., 2020b). Furthermore, poly-
saccharides extracted from AB have been found to 
possess antioxidant activity in a concentration-de-
pendent manner (Wu et al., 2014). 

Agaricus blazei Murrill stipe (ABS) is a  by-
product of mushroom processing that is typically 
discarded, resulting in environmental pollution 
and waste of resources (Liu et al., 2020). We hy-
pothesised that dietary ABS supplementation could 
improve the growth and health of chickens. There-
fore, the objective of this study was to examine the 
effects of dietary ABS on various parameters, in-
cluding growth performance, short-chain fatty acid 
(SCFA) production, antioxidant capacity, immune 
function, meat quality, gut function, and ceacal mi-
crobiota in broilers.

Material and methods
ABS preparation

ABS used in this study was obtained from 
Guangxi Junbaoyan Food Co., LTD. (Longzhou, 
China). The raw material was dried at 55  ℃ 
in an oven to preserve the bioactivity of ABS. 
Subsequently, the dried ABS was ground into 
powder and passed through a  sieve (2  mm). 
The analysed nutritional composition of ABS is 
presented in Table 1.

Animals, diets, and experimental design
Animals used in the current study received prior 

approval from the Institutional Animal Care and Use 
Committee of the Guangxi Academy of Agricul-
tural Sciences (WSW211001). A  total of 180 one-
day-old male Arbor Acre broilers, with an initial 
body weight (IBW) of 46.17 ± 2.47 g, were bought 
from Shandong Yi Sheng Livestock and Poultry 
Breeding Company (Yantai, SD, China). All broil-
ers were randomly allocated to 3 treatment groups, 
with 6  replicates and 10 broilers in each replicate. 
The experimental treatments included one basal 
diet (control group) and two experimental diets 
supplemented with 1% and 2% ABS, respectively. 
All nutrient levels in the diets met or exceeded the 
standards recommended by the National Research 
Council (NRC, 1994). The composition and nutrient 
concentrations are shown in Table 2. The trial lasted 
42  days and was divided into Phase  1  (day  1–21) 
and Phase 2 (day 22–42). All broilers were inoculat-
ed with inactivated Newcastle disease vaccine (Bei-
jing Centre Biological Co., Ltd., Beijing, China) on 
days 7 and 28, and infectious bursal disease vaccine 
on days 14 and 21. All broilers were raised in cages 
in an environmentally controlled room. The light-
ing conditions were set to provide continuous light 
at intensities ranging from 10  to 20  lux. All birds 
had free access to water and feed. During the first 
3 days, the ambient temperature was maintained at 
33 °C and then gradually decreased by 3 degrees per 
week to 24 °C.
Growth performance and sample collection

Individual body weight and feed consumption 
were measured on days 1, 21, and 42 to determine 
average daily gain (ADG) and average daily feed 
intake (ADFI). Feed conversion ratio (FCR) was 
also calculated for each period. On day 42, 1 bird 
was selected per replicate with a  body weight 
close to the average body weight per pen. Blood 
samples (n  = 6) were collected from the vein on 
the wing of each broiler into a 10 ml tube. After 
centrifugation at 3000 g for 15 min at 4 °C, serum 

Table 1. Chemical composition of Agaricus blazei Murrill stipe  
(ABS), %1

Item ABS
Crude protein 11.70
Neutral detergent fibre 41.50
Acid detergent fibre 22.70
Ether extract   1.58
Ash   5.10
Total polysaccharide   2.97
1 performed in duplicate
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samples were separated and stored at −20 °C until 
analysis. For sample collection, broilers (n  = 6, 
1  broiler per replicate) were stunned, euthanized 
by CO2, and slaughtered. Segments of the jejunum 
measuring 3  cm were collected and preserved in 
4% paraformaldehyde solution for intestinal mor-
phological analysis. Breast meat samples were 
also collected for meat quality determination.  
Caecal contents were frozen in liquid nitrogen for 
short chain fatty acids SCFA analysis (n = 6) and 
16S rRNA sequencing (n = 4).

Chemical analysis
The ABS ingredient and experimental diets were 

analysed for crude protein, ether extract, ash, neutral 
detergent fibre, acid detergent fibre, calcium, and 
total phosphorus contents (Van Soest et  al., 1991; 
AOAC International, 2006). The total polysaccharide 
content was measured using the phenol-sulphuric 
acid method developed by Nielsen (2003). 

Determination of serum biochemical 
parameters

The serum biochemical parameters were de-
termined using assay kits purchased from the  
Jiancheng Institute of Biological Technology, Nan-
jing, JS, China. The contents of total antioxidant 
capacity (T-AOC), malondialdehyde (MDA), glu-
tathione peroxidase (GSH-Px), and superoxide 
dismutase (SOD) were measured according to the 
manufacturer’s instructions and determined using 
an automatic biochemical analyser (model  7170, 
Hitachi Corp, Tokyo, Japan). The concentrations of 
immunoglobulins (IgA, IgG, IgM), tumour necrosis 
factor-α (TNF-α), interleukin-6 (IL-6), interleukin-
1β (IL-1β), and interleukin-10 (IL-10) were deter-
mined using commercially available ELISA kits. 
The concentrations LDL, HDL, TG, and total cho-
lesterol (TC) were measured using an automatic 
biochemical analyser (model  7170, Hitachi Corp, 
Tokyo, Japan) at the wavelength of 450 nm.

Table 2. Composition and nutrient levels in the experimental diets, %, as fed basis

Item Phase 1 (day 1 to 21) Phase 2 (day 22 to 42)
Control 1% ABS 2% ABS Control 1% ABS 2% ABS

Ingredients
maize   57.79   56.44   55.04   65.03   63.68   62.29
soybean meal   30.00   30.00   30.00   24.00   24.00   24.00
soy protein concentrate     2.00     2.00     2.00     2.00     2.00     2.00
ABS     0     1.00     2.00     0     1.00     2.00
fish meal     3.00     3.00     3.00     3.00     3.00     3.00
soybean oil     3.55     3.90     4.27     2.86        3.20     3.56
dicalcium phosphate     1.30     1.30     1.31     0.80     0.80     0.80
limestone     1.42     1.42     1.42     1.47     1.47     1.47
salt     0.30     0.30     0.30     0.30     0.30     0.30
L-lysine     0     0     0.01     0     0     0.01
methionine     0.14     0.14     0.14     0.04     0.04     0.05
threonine     0     0     0     0     0     0.01
tryptophan     0     0     0.01     0     0     0.01
vitamin-mineral premix1     0.50     0.50     0.50     0.50     0.50     0.50
total 100.00 100.00 100.00 100.00 100.00 100.00

Calculated nutrient levels2

metabolisable energy, MJ/kg   12.76   12.76   12.76   12.97   12.97   12.97
digestible lysine     1.22     1.22     1.22     1.08     1.08     1.08
digestible methionine     0.50     0.50     0.50     0.38     0.38     0.38
digestible threonine     0.83     0.83     0.83     0.75     0.75     0.75
digestible tryptophan     0.30     0.30     0.30     0.26     0.26     0.26

Analysed nutrient level
crude protein   22.13   21.98   21.85   19.83   19.75   19.71
calcium     0.98     1.03     0.99     0.93     0.91     0.95
total phosphorus     0.68     0.65     0.67     0.61     0.62     0.60

ABS – Agaricus blazei Murrill stipe; 1 premix supplied per kg diet: mg: copper 10, iron 48, zinc 96.6, manganese 101.76, cobalt 0.3, selenium 0.05, 
iodine 0.96, vitamin E 22, vitamin K3 2.2, thiamine 1.65, pyridoxine 3.3, riboflavin 6.6, folic acid 0.33, nicotinic acid 22, pantothenic acid 13.2, 
choline chloride 500; IU: vitamin A 11 000, vitamin D3 025; μg: cobalamin 17.6, biotin 88; 2 nutrient levels were calculated based on data provided 
by NRC (1994)
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Analysis of intestinal SCFAs
Caecal SCFA concentrations were analysed ac-

cording to a modified method described by Porter 
and Murray (2001). Specifically, approximately 
1  g of digesta was dissolved in 2.0  ml HCl solu-
tion (0.10%) and shaken vigorously. After incuba-
tion at 0 °C in a sealed centrifuge tube for 30 min, 
the tube was subjected to high-speed centrifugation 
at 12000 rpm for 15 min. The resulting supernatant 
was collected and mixed with 25% (m/v) phos-
phoric acid. Next, the mixture was kept on ice for 
40 min and filtered through a 0.45 μm nylon filter 
into a chromatographic sample vial. A 5.0 μl aliquot 
was injected into a gas chromatograph (6890, Agi-
lent Crop, Santa Clara, CA, USA) with a capillary 
column (DB-23, 60  m  × 0.25  mm, 0.25  μm, Agi-
lent Crop, Santa Clara, CA, USA). The column was 
maintained at 50 ℃ for 10 min, followed by a tem-
perature increase at a  rate of 10  ℃ per min until 
reaching 230 ℃, resulting in a  run time of 9 min. 
The injector and flame ionization detectors were 
maintained at 280 ℃. The carrier gas (nitrogen) was 
set at a flow rate of 1 ml per min.

Intestinal morphology measurements
Morphological measurements of the jejunum 

were carried out according to the method described 
by Abdelqader and Al-Fataftah (2016). Formalin-
fixed tissue samples collected from the jejunum 
were washed with physiological saline solution and 
then embedded in paraffin wax (Shanghai Yiyang, 
Shanghai, China). Paraffin blocks were cut into 
5 μm sections, mounted on glass slides and stained 
with haematoxylin-eosin. Villus height (VH) and 
crypt depth (CD) were determined using a  light 
microscope with a  morphometric system (Eclipse 
E100, Nikon, Tokyo, Japan), which allowed to cal-
culate the ratio of villus height to crypt depth (V/C).

Determination of viscera percentage and 
meat quality

On day 42, the liver, spleen, thymus gland, and 
bursa of Fabricius were weighed to calculate the 
percentage of viscera relative to body weight (BW). 
Fresh breast meat was used to analyse meat quality, 
including colour, pH, drip loss, and shear force. The 
pH values of raw breast meat after 45 min and 24 h 
were determined by a  pH meter (IS400, Mingao, 
Nanjing, JS, China). Meat colour characteristics 
expressed as lightness (L*), redness (a*), and yel-
lowness (b*) were measured using a Chroma Meter 
(NR, Mingao, Nanjing, JS, China). All tests were 
performed in triplicate at three different locations. 
Drip loss after 24 h was determined according to the 

method described by Straadt et al. (2007) and was 
calculated as follows: drip loss, % = [(initial meat 
weight − final meat weight) / initial meat weight] × 
100%. Shear force was determined using a muscle 
tenderness meter (MAQC-12, Mingao, Nanjing, JS, 
China), as described by Ciobanu et al. (2004). 

16S rRNA sequencing and analysis
For 16S  rRNA sequencing, total bacterial 

DNA from caecal contents was extracted using the 
E.Z.N.A.® Soil DNA Kit (Omega Bio-Tek, Nor-
cross, GA, USA) following the manufacturer’s 
instructions. The extracted DNA was checked 
for quality using a  1% agarose gel (Shanghai  
Yuanye, Shanghai, China) electrophoresis, and 
DNA concentration was measured using a  spec-
trophotometer (NanoDrop2000, Thermo Fisher 
Scientific, Waltham, MA, USA). The V3–V4 hy-
pervariable regions of 16S  rRNA were amplified 
using a  GeneAmp  9700  thermocycler PCR system 
(ABI, CA, USA) and the following primers: 338F 
(5’-ACTCCTACGGGAGGCAGCAG-3’) and 806R 
(5’-GGACTACHVGGGTWTCTAAT-3’). The am-
plification conditions were as follows: initial denatur-
ation at 95 ℃ for 3 min, 40 cycles of denaturation at 
95 ℃ for 30 s, annealing at 55 ℃ for 30 s, extension 
at 72 ℃ for 45 s, and final elongation at 72 ℃ for 
10  min. Polymerase chain reaction (PCR) products 
were extracted from 2% agarose gel and purified using 
the AxyPrep DNA Gel Extraction Kit (Axygen Bio-
sciences, Union City, CA, USA). Subsequently, the 
purified PCR products were pooled in equimolar con-
centrations and subjected to paired-end sequencing 
on an Illumina MiSeq PE300 platform (Illumina, San  
Diego, CA, USA) following the protocols pro-
vided by Majorbio Bio-Pharm Technology Co. Ltd  
(Shanghai, China).

Statistical analysis
Data on growth performance, serum biochemi-

cal parameters, SCFA contents, morphological in-
dices, viscera percentage, and meat quality values 
were checked for normality using the UNIVERIATE 
procedure of SAS (Version 9.2, SAS Institute Inc., 
Cary, NC, USA). Subsequently, they were analysed 
using the general linear models (GLM) procedure 
of SAS. For growth performance data, the pen was 
considered as the experimental unit, while for other 
data, each individual broiler was treated as the ex-
perimental unit. Least squares means (LSMEANS) 
analysis was performed to separate group means 
with Turkey’s test used for adjustment. The level of 
significance was set at P < 0.05, and a tendency for 
significance was assumed at 0.05 ≤ P < 0.10.
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Results

Growth performance
The data on growth performance are shown in 

Table 3. ABS supplementation significantly reduced 
FCR in the overall period (P < 0.05) and tended to 
increase ADG in Phase 2 (0.05 < P < 0.1) and over 
the whole period (0.05 < P < 0.1). No differences 
were found in ADFI between any of the groups dur-
ing individual stages.

Determination of serum biochemical 
parameters

The results of dietary ABS supplementation 
on serum biochemical parameters are shown in 
Table  4. There were no differences observed in 
the content of glutathione peroxidase (GSH-Px), 
superoxide dismutase (SOD), total peroxidase 
(T-AOC), and  malondialdehyde (MDA) in any of 
the groups. Compared to the control group, ABS 
supplementation significantly decreased serum 
concentration of IL-1β (P < 0.05), but did not affect 
the levels of immunoglobulins (IgA, IgG, IgM), 
tumor necrosis factor-α (TNF-α), IL-6, and IL-10. 
Broilers fed ABS exhibited lower TC concentrations 
(P  < 0.05), while there were no differences in  
TG, HDL, and LDL levels between individual 
groups.

Determination of SCFAs in the caecum
As shown in Table 5, ABS supplementation had 

no effect on the production of SCFAs compared to 
the control group.

Intestinal morphology measurements
As shown in Table 6 and Figure 1, diets supple-

mented with ABS significantly increased the V/C ra-
tio (P < 0.05) in the jejunum and tended to increase 
villus height (P  < 0.1) and decrease crypt depth  
(P < 0.1) compared to the control group.

Viscera percentage and meat quality 
determination

The results concerning viscera percentage and 
meat quality are shown in Table  7 and Table  8. 

Table 4. Effects of Agaricus blazei Murrill stipe (ABS) on broiler serum 
biochemical indices 

Item Treatments SEM P-valueControl 1% ABS 2% ABS
GSH-Px, umol/l   23.11   23.78   24.66 3.09 0.94
T-AOC, U/ml     4.44     4.32     4.65 0.56 0.91
SOD, U/ml   33.96   36.11   35.63 2.75 0.85
MDA, nmol/ml     7.29     6.98     6.62 0.50 0.65
IgA, g/l   58.15   57.44   59.80 4.07 0.92
IgM, g/l   16.97   17.63   18.11 1.05 0.75
IgG, g/l   26.84   26.41   27.80 1.93 0.87
IL-1β, pg/ml     2.59a     2.21b     2.14b 0.10 0.02
IL-6, pg/ml   13.66   13.12   13.17 0.72 0.85
IL-10, ng/ml 134.91 136.47 138.05 5.60 0.92
TNF-α, pg/ml     6.31     6.07     5.84 0.42 0.74
TG, mmol/l     0.66     0.60     0.62 0.05 0.64
TC, mmol/l     2.56a     2.07b     2.03b 0.13 0.02
HDL, mmol/l     1.89     2.07     2.00 0.14 0.66
LDL, mmol/l     0.51     0.50     0.47 0.05 0.81
GSH-Px  – glutathione peroxidase, T-AOC  – total antioxidant 
capacity, SOD  – superoxide dismutase, MDA  – malondialdehyde,  
IgA  – immunoglobulin A, IgG  – immunoglobulin G, IgM  – 
immunoglobulin M, IL-1β – interleukin 1β, IL-6 – interleukin 6, IL-10 – 
interleukin  10, TNF-α  – tumour necrosis factor-α, TG  – triglyceride, 
TC  – total cholesterol, LDL  – low-density lipoprotein cholesterol,  
HDL – high-density lipoprotein cholesterol, SEM – standard error of 
the mean; ab different superscripts within a row indicate that the means 
are significantly different at P < 0.05

Table 3. Effects of Agaricus blazei Murrill stipe (ABS) on broiler growth 
performance 

Item
Treatments

SEM P-valueControl 1% ABS 2% ABS
Day 1–21

initial body 
weight, g

    45.84     46.47     46.21 0.83 0.87

final body weight 
on day 21, g

  578.82   596.73   588.05 6.45 0.20

ADG, g     25.38     26.17     25.80 0.29 0.22
ADFI, g     34.3     34.88     34.84 0.23 0.19
FCR       1.35       1.34       1.35 0.01 0.77

Day 22–42
final body weight 
on day 42, g

1829.47 1897.76 1900.93 23.84 0.10

ADG, g     59.57     61.90     62.52 0.84 0.07
ADFI, g     93.31     93.78     94.09 1.14 0.89
FCR       1.57       1.52       1.51 0.02 0.26

Overall period
ADG, g     42.47     44.84     44.16 0.61 0.051
ADFI, g     63.80     64.33     64.47 0.62 0.74
FCR       1.51a       1.44b       1.46ab 0.02 0.04

ADG  – average daily gain, ADFI  – average daily feed intake,  
FCR  – feed conversion ratio, SEM  – standard error of the mean; 
ab different superscripts within a  row indicate that the means are 
significantly different at P < 0.05

Table 5. Effects of Agaricus blazei Murrill stipe (ABS) on short chain 
fatty acid concentrations in the caecum of broilers, μg/g

Item Treatments SEM P-valueControl 1% ABS 2% ABS
Acetate 180.77 176.63 181.91 7.08 0.86
Propionate   78.25   76.10   79.20 2.86 0.74
Butyrate 165.85 169.42 171.60 5.02 0.72
Total 424.87 417.15 426.04 7.07 0.64
SEM  – standard error of the mean; ab different superscripts within 
a row indicate that the means are significantly different (P < 0.05) 
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There were no differences in the viscera percentage 
indices and meat quality between the control and 
ABS groups.

Caecal microbiota analysis
Figure  2 shows that dietary supplementation 

with 1% or 2% ABS significantly improved micro-
biota diversity (P < 0.01) in broilers compared to the 
control diet.

Figure  3 illustrates the results of core opera-
tional taxonomic unit (OTU) analysis of the micro-
biota samples. Among the three groups, there were 
a total of 13, 26, and 31 core OTUs specific to each 
group, with a common set of 280 core OTUs shared 
among all groups. The majority of core OTUs in the 
control group (280 out of 321) were shared with the 
ABS-added groups. Additionally, 26  OTUs were 
only shared with 1% of the ABS group, 31 OTUs 
were uniquely shared with 2% of the ABS group, 
and 65 OTUs were common for both ABS groups.

All experimental groups had the same abun-
dance of the 4 most common phyla, but differed in 
their relative abundance (Figure 4). 

At the order level, Peptostreptococcales- 
Tissierellales, Erysipelotrichales, Acidaminococ-
cales, Clostridia_UCG-014, and Clostridiales pre-
sented significant differences in the abundance be-
tween the three groups. Dietary supplementation of  

Figure 1. Effect of Agaricus blazei Murrill stipe (ABS) addition on the jejunal morphology in Arbor Acres broilers

Table 6. Effects of Agaricus blazei Murrill stipe (ABS) on broiler jejunal 
morphology, μm

Item Treatments SEM P-valueControl 1% ABS 2% ABS
Villus height 1180.91 1378.52 1245.46 58.92 0.07
Crypt depth   144.83   122.66   112.19   9.12 0.05
Villus height/Crypt 
depth

      8.73b     11.51a     11.65a   0.74 0.01

SEM – standard error of the mean; ab different superscripts within a row 
indicate that the means are significantly different at P < 0.05 

Table 7. Effects of Agaricus blazei Murrill stipe (ABS) on broiler viscera 
percentage on day 42 (%, body weight)

Item Treatments SEM P-valueControl 1% ABS 2% ABS
Liver 1.94 1.97 1.98 0.06 0.90
Spleen 0.12 0.14 0.13 0.01 0.36
Thymus gland 0.19 0.20 0.21 0.01 0.34
Bursa of Fabricius 0.21 0.22 0.20 0.01 0.61
SEM  – standard error of the mean; ab  different superscripts within 
a row indicate that the means are significantly different at P < 0.05 

Table 8. Effects of Agaricus blazei Murrill stipe (ABS) on broiler meat 
quality 

Item
Treatments

SEM P-value
Control 1% ABS 2% ABS

pH at 45 min   6.48   6.47   6.44 0.05 0.83
pH at 24 h   5.68   5.66   5.63 0.05 0.69
ΔpH   0.79   0.80   0.81 0.06 0.98
L* at 45 min 49.12 50.15 51.24 1.35 0.56
a* at 45 min   5.78   5.27   5.70 1.27 0.96
b* at 45 min   7.81   7.36   5.69 0.99 0.33
L* at 24 h 50.58 48.06 49.04 1.64 0.57
a* at 24 h   5.53   5.38   7.53 1.22 0.41
b* at 24 h   5.46   4.71   7.32 0.84 0.13
Drip loss, %   2.39   2.54   2.56 0.15 0.71
Shear force, kg   1.28   1.20   1.20 0.26 0.96
ΔpH  = pH at 45  min  – pH at 24  h; L*  – lightness, a*  – redness,  
b*  – yellowness, SEM  – standard error of the mean;  ab  different 
superscripts within a  row indicate that the means are significantly 
different at P < 0.05

 

                 Control                                       1% ABS treatment                              2% ABS treatment             

Figure 2. Alpha diversity of the caecal microbiota 
CON – control diet, ABS1 – 1% ABS diet, ABS2 – 2% ABS diet
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ABS significantly increased the abundance of Pep-
tostreptococcales-Tissierellales, Erysipelotrichales, 
and Clostridia_UCG-014 compared to the control 
diet (Figure 5).

As illustrated in Figure 6, the relative abundance 
of o__Clostridia_UCG-014, f__norank_o__Clos-
tridia_UCG-014, g__norank_f__norank_o__Clos-
tridia_UCG-014, and g__norank_f__Ruminococ-
caceae, g__Lachnospira was significantly increased 
after 1% ABS supplementation in relation to the con-
trol group. Broilers fed a diet with 2% ABS showed 
a  significant increase in the relative abundance of 
g__Turicibacter, o__Erysipelotrichales, f__Erysip-
elotrichaceae, f__Peptostreptococcaceae, o__Pep-
tostreptococcales-Tissierellales, g__Romboutsia, 
g__Candidatus_Soleaferrea, f__Clostridiaceae, 
o__Clostridiales, g__Clostridium_sensu_stricto_1, 
o__Rhodospirillales, f__norank_o__Rhodospiril-
lales, and g__norank_f__norank_o__Rhodospiril-
lales, compared to the control group.

Discussion

In this study, the incorporation of ABS in broil-
ers’ diets decreased FCR compared to the control 
diet. The underlying mechanisms could be attrib-
uted to bioactive compounds present in ABS. Ac-
cording to Giannenas et al. (2010a), polysaccharides 
derived from mushrooms, such as those found in 
ABS, have the potential to enhance the activity of 

Figure 3. Venn diagram analysis of the caecal microbiota 
CON – control diet, ABS1 – 1% ABS diet, ABS2 – 2% ABS diet

 
 Figure 4. Alterations in the caecal microbiota at the phylum level 
CON – control diet, ABS1 – 1% ABS diet, ABS2 – 2% ABS diet

Figure 5. Kruskal-Wallis H test bar plot at the order level of the caecal 
microbiota 
CON – control diet, ABS1 – 1% ABS diet, ABS2 – 2% ABS diet

Figure 6. Linear discriminant analysis effect size (LEfSe) of the caecal 
microbiota
CON  – control diet, ABS1  – 1% ABS diet, ABS2  – 2% ABS diet,  
LDA  – linear discriminant analysis
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gut microflora and promote the production of ben-
eficial metabolites like SCFA, thereby improving 
gastrointestinal health. 

The latter authors demonstrated that the inclu-
sion of 1% and 2% Agaricus bisporus in broiler 
diets resulted in improved feed efficiency without 
affecting feed intake. Additionally, broilers fed 2% 
A.  bisporus showed increased body weight and 
weight gain on day 42, which was partly consistent 
with our results. Another study reported that weaned 
piglets fed diets with 0.1% AB extract showed an 
11% increase in productivity (Maribo, 2004). Simi-
larly, mice fed with AB also showed improved per-
formance, and AB addition increased villous height 
and V/C ratio in the small intestine. These studies 
implied that AB could be vital in enhancing villous 
development, consequently improving intestinal ab-
sorption (Shen et al., 2012).

The present work demonstrated that dietary ABS 
supplementation did not affect the antioxidant capac-
ity of broiler serum. A previous study (Wang et al., 
2013) reported that AB ethanolic extracts exhibited 
strong reducing power, inhibition of lipid peroxida-
tion (LPO), scavenging capacity of 1,1-diphenyl-
2-picrylhydrazyl (DPPH) radicals, and ferrous ion 
chelating capacity. Similarly, Jia et al. (2013) found 
that five polysaccharides obtained from AB using 
various methods, involving hot water, single-en-
zyme extraction, and compound-enzyme extraction 
exhibited antioxidant activity in a concentration-de-
pendent manner. All extracts showed scavenging ac-
tivity towards hydroxyl radical, DPPH radical, and 
2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonate) 
(ABTS) radical, indicating their potential as natural 
antioxidants. It is important to recognize that in vitro 
studies provide valuable insights into the antioxi-
dant properties of substances. However, translation 
of these findings to in vivo experiments and their ef-
fects on living organisms may not always align.

Inflammation can have both beneficial and 
detrimental effects on the body. While it can help 
combat pathogens and initiate the healing process, 
an excessive or prolonged inflammatory response 
can lead to cell damage and tissue dysfunction, par-
ticularly when it occurs in situations where it is not 
necessary or desired, such as normal physiological 
conditions (Lee et al., 2019). Administration of diets 
with ABS to broilers could result in a decrease in 
IL-1β level. The anti-inflammatory effect exerted by 
ABS may be attributed to the presence of polysac-
charides in ABS. Polysaccharides are the main bio-
active substances in AB and are known to possess 
antioxidant, anti-inflammatory, anti-hyperlipidae-

mic, and immune properties (Da Silva et al., 2013). 
Human studies have also shown that consumption 
of AB extracts can lead to a decrease in serum lev-
els of TNF-α, IL-1β, IL-2, and IL-17 (Johnson et al., 
2009). AB contains high levels of β-glucan, and 
dietary supplementation with this compound could 
reduce the levels of proinflammatory cytokines. 
Previous studies have even suggested that a reduced 
immune response may enhance nutrient utilisation 
and promote accelerated tissue growth (Tzianabos, 
2000; Ohno et al., 2001).

Concentrations of serum TG, TC, HDL, and 
LDL are commonly used indicators of lipid metabo-
lism (Dechesne et al., 2016). We observed that die-
tary ABS supplementation decreased serum TC con-
centration in broilers. In a study by Li et al. (2020b), 
AB polysaccharides decreased serum TC levels in 
hyperlipidaemic rats. The possible mechanism be-
hind this effect could be an increase in the expres-
sion of 7α-hydroxylase (CYP7A1) protein after the 
administration of AB polysaccharides. As previous 
studies have indicated, CYP7A1 is an enzyme limit-
ing the transformation of cholesterol into bile acids 
in the liver and plays a central role in maintaining 
the dynamic balance of cholic acid and cholesterol 
(Lee et al., 2018; Hasegawa et al., 2019). Addition-
ally, Wei et al. (2019) have reported that AB extracts 
have a positive regulatory effect on blood lipids. 

We observed that ABS supplementation did 
not affect SCFA contents in broilers. A  possible 
reason could be that ABS contains more insoluble 
fibre. Angkanaporn et  al. (1994) reported that the 
indigestible dietary fibre components could be 
subjected to limited fermentation and, therefore, exert 
insignificant effect on SCFA contents in the caeca of 
broilers. However, other study indicated that dietary 
fibre could modulate caecal SCFA concentrations 
(Lin and Olukosi, 2021). The production of SCFA 
in the caeca in chickens is influenced by microbial 
colonisation, nutrient flow, and gut maturation. 
Broilers, compared to other species, exhibit greater 
variability and lower efficiency in extracting energy 
from non-starch polysaccharides, which can be 
attributed to the absence of fibre-digesting enzymes 
and their relatively short gastrointestinal tract and 
faster transit time of digesta (Walugembe et  al., 
2015). Considering these factors, it is plausible that 
different dietary conditions, such as the composition 
and digestibility of fibre, could contribute to the 
discrepancy observed in SCFA contents between 
studies.

A  certain amount of dietary fibre is necessary 
for normal physiological function of the intestine in 
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poultry (González-Alvarado et al., 2007). The effects 
of dietary fibre can vary based on factors such as 
particle size, chemical structure, and supplementation 
level. One of the key indicators of intestinal health 
is the morphology of the intestinal lining, including 
parameters such as villus height, crypt depth, and 
the V/C ratio. These morphological indices are 
closely associated with the intestinal absorption 
capacity and can have a  significant impact on the 
growth performance of animals (Pluske et al., 1996; 
Montagne et al., 2003). Changes in gut morphology 
have been associated with higher tissue turnover 
or the presence of toxins, resulting in shorter villi 
and deeper crypts (Miles et al., 2006). In the current 
study, ABS supplementation could have improved 
small intestine morphology. Fard et al. (2014) also 
observed that the villus height of jejunum in broilers 
(Ross 308) was significantly increased after dietary 
addition of 1% and 2% oyster mushroom waste. 

Meat quality yield of broilers, including 
parameters such as water holding capacity, pH value, 
and meat colour, did not show significant differences 
between the three treatments in the present work. 
This finding was consistent with a study conducted 
by Moon et al. (2016), where the addition of dietary 
β-glucan at different concentrations did not affect 
these meat quality characteristics in chicken breast 
muscle. The intestinal microbiota plays a  crucial 
role in the growth and health of broilers, and its 
composition can be influenced by dietary factors. 
The relationship between dietary carbohydrates and 
bacterial populations in the gut has been extensively 
studied (Yang et al., 2009). Polysaccharides present 
in the diet can be degraded by the gut microbiota, 
leading to the production of metabolites, primarily 
SCFA. The latter serve as an energy source for 
intestinal epithelial cells and play a role in regulating 
microbial diversity, pH value, intestinal peristalsis, 
and barrier function (Li et al., 2020a).  

In the current study, the addition of ABS 
could decrease the abundance of Bacteroidota and 
increase the number of Firmicutes in the gut of 
broilers. It has been observed that higher abundance 
of Firmicutes is positively correlated with animal 
obesity, whereas Bacteroides are associated with 
host body maintenance (Simpson and Campbell, 
2015). Simpson and Campbell. (2015) have also 
demonstrated that dietary fibre could promote 
Bacteroides proliferation and reduce the population 
of Firmicutes in the gut of mammals. This result 
is contradictory to our findings. The discrepancy 
may be partly due to differences in digestion and 
absorption between chickens and mammals.

According to the results of the linear discri-
minant analysis effect size (LEfSe) method, ABS 
supplementation could promote the proliferation 
of beneficial bacteria, many of which exhibit anti-
inflammatory, antioxidant, and SCFA-producing 
abilities. The family Ruminococcaceae are SCFA 
producers (Bonvegna and Cilia, 2023); Lachnospira, 
Erysipelotrichaceae, and Candidatus_Soleaferrea 
can be considered as potential probiotics (Bian et al., 
2020; Zhang et al., 2022; Zou et al., 2022); Turici-
bacter has been found to display anti-inflammatory 
activity related to SCFA production and associated 
with glucolipid metabolism (Wu et  al., 2020); the 
family Peptostreptococcaceae has the ability to fer-
ment polysaccharides and produce SCFA (Bernad-
Roche et al., 2021), while Romboutsia is beneficial 
bacterium, and its metabolites have been shown to 
have anti-inflammatory, antioxidant, and immune-
protective properties (Zhang et  al., 2022). We con-
clude that bacteria with anti-inflammatory activity 
may also play a role in reducing serum IL-1β levels 
in broilers fed ABS diets.

Conclusions
Dietary supplementation of Agaricus  blazei 

Murill stipe (ABS) resulted in a  decrease in feed 
convertion ratio, as well as serum interleukin-1β 
and total cholesterol concentrations. Broilers fed 
ABS diets also showed higher microbial diversity 
in the caecum, enhanced proliferation of beneficial 
bacteria, and improved the villus height to crypt 
depth ratio in the jejunum. Based on these findings, 
it can be inferred that ABS has the potential to be 
applied as a viable feed ingredient for broilers. Its 
supplementation can improve feed efficiency, re-
duce inflammation, lower cholesterol levels, en-
hance microbial diversity, and promote a healthier 
gut environment.
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