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Introduction

For several decades, the demand for feed 
materials, particularly protein and fat sources, has 
steadily increased across various sectors of livestock 
production, especially in areas where production 
has become more intensive. Historically, both 
animal-derived meals and plant-based materials, as 
well as by-products from the food and agricultural 
industries, have been used to meet this demand. 
However, modern challenges related to sustainable 
development, including water-efficient management, 
reduction of greenhouse gas emissions, use of by 
products like crop residues, climate change and 

biodiversity protection require optimalisation of 
animal husbandry practices. Over the past few 
decades, the growing demand for alternative 
protein and lipid feed materials has prompted the 
experiments on the use of insects and substances they 
synthesise in feed products (Table 1). The number of 
publications on this topic has been steadily increasing 
over this period (Kierończyk et al., 2022). Studies 
investigating the utilisation of insect-derived feed 
materials in animal nutrition have demonstrated their 
unique nutritional properties. These feed components 
have high protein digestibility and a favourable amino 
acid profile, meeting the nutritional requirements of 
various animal species. Additionally, certain insect 
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species are characterised by a low fat content, while 
providing a high concentration of polyunsaturated 
fatty acids. Moreover, insect-based feeds demonstrate 
nutraceutical potential, offering functional benefits 
that may enhance animal health and performance 
(Navarro del Hierro et al., 2020; Kierończyk et al., 
2022, 2024; Tables 2 and 3). However, the chemical 
makeup of insects is strongly influenced by the 
composition of their rearing substrate. Changes in diet 
not only affect the protein and fat content or dry matter 
of insects, but also alter their profile of fatty acids 
and amino acids, as well as the content of micro- and 
macronutrients (Jajić et al., 2022; Table 2). Therefore, 
understanding the impact of insect diets on their body 
composition is essential for developing targeted 
feed formulations that meet livestock nutritional 
needs. In addition, insect meal has the potential to 
become a more environmentally sustainable feed 
source compared to the traditionally used fish meal 
or plant-based alternatives, such as soybeans. This 
is largely due to the possibility of rearing insects on 
bio-waste and agro-residues, enabling the closure 
of matter cycles within food production systems  

(van Huis, 2020; Beyers et al., 2023). However, current 
regulations prohibit insect producers from using agri-
food waste if the end products are intended for human 
consumption (European Commission, 2017a,b; 
Lähteenmäki-Uutela et al., 2021). Additionally, even 
intensive insect farming exerts lower pressure on 
biodiversity, as it requires less land area compared to 
conventional livestock farming and can be integrated 
into existing infrastructure. 

Extensive research has been devoted to exploring 
the potential of insects, commonly used by vivarium 
hobbyists as feed for companion animals, in food and 
animal feed applications. These include yellow meal-
worms (Tenebrio molitor), superworms (Zophobas 
morio), various species of crickets and locusts (order 
Orthoptera), black soldier fly larvae (Hermetia il-
lucens), cockroaches/roaches (order Blattodea), and 
the African palm weevil (Rhynchophorus phoenicis). 
Some of these species, such as the desert locust (Schis-
tocerca gregaria), Jamaican field cricket (Gryllus 
assimilis) or Turkestan cockroach (Blatta lateralis) 
have a high protein and low body fat contents (Hong  
et al., 2020; Tables 1 and 2). 

Table 1. Selected insect species used in animal nutrition worldwide

Species
Use of insects or 
substances derived 
from insects

Application as  
a lipid and/or protein 
source

Fed species References

Black soldier fly  
(Hermetia illucens)

insects – mostly 
larvae

lipid and protein 
source

dog (Canis familiaris) Freel et al. (2021)
rainbow trout (Oncorhynchus mykiss)  
african sharptooth catfish (Clarias gariepinus)

Bartucz et al. (2023)

broiler chicken (Gallus gallus domesticus) Kierończyk et al. (2024)
Desert locust  
(Schistocerca gregaria)

insects lipid and protein 
source

nile tilapia (Oreochromis niloticus) Ramzy et al. (2022)
broiler chicken (Gallus gallus domesticus) Al-Homidan et al. 

(2024)
Honey bee  
(Apis mellifera)

royal jelly lipid source zebrafish (Danio rerio) Vural et al. (2023)

House cricket  
(Acheta domestica)

insects lipid and protein 
source

rainbow trout (Oncorhynchus mykiss) Turek et al. (2020)

Silkworm (Bombyx mori) chrysalis (spent 
silkworm pupae)

lipid and protein 
source

chicken (Gallus gallus domesticus) Miah et al. (2020)

Superworm  
(Zophobas morio)

insects – larvae lipid and protein 
source

rainbow trout (Oncorhynchus mykiss) Turek et al. (2020)
grower native chicken  
(Gallus gallus domesticus L.)

Magsalay et al. (2024)

Termites  
(Macrotermes bellicosus)

insects lipid and protein 
source

broiler chicken (Gallus gallus domesticus) Mali et al. (2020)

Termites (Macrotermes 
falciger)

insects lipid and protein 
source

mozambique tilapia  
(Oreochromis mossambicus)

Nephale et al. (2024)

Yellow mealworm 
(Tenebrio molitor)

insects – larvae and 
imago

lipid and protein 
source

broiler chicken (Gallus gallus domesticus) Biasato et al. (2016)
blackspot sea bream (Pagellus bogaraveo) Iaconisi et al. (2017)
broiler chicken (Gallus gallus domesticus), 
pig (Sus domesticus)

Hong et al. (2020)

rainbow trout (Oncorhynchus mykiss) Jeong et al. (2020)
The European Union (EU) is promoting the use of insect meal as a promising feed material for the future. In July 2017, the EU began creating 
legislation and permits for the use of insects as processed animal protein (PAP) from insect. This legislative amendment allows the transformation 
of insects into insect meal (dried insect ground to meal), which is high in energy and protein content (Adli, 2021)
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Current research on the application of insects and 
insect-derived products primarily focuses on evaluat-
ing their impact on the health status of livestock fed 
insect meal-enriched feed. However, limited atten-
tion has been given to assessing the health condition 
of the insects utilised for meal production. Investi-
gating whether the health status of insects intended 
for consumption influences the quality of the result-
ing insect meal, and whether this could subsequently 
impact the health and welfare of animals consuming 
such feed, would provide critical insights. Diagnostic 
methods for this purpose could be developed based 
on knowledge gained from toxicity tests on insects. 
These methods could incorporate biochemical as-
says, whose utility has been evaluated in the pre-
sent study. Furthermore, such diagnostic tools could 
be employed in toxicity testing or in environmental 
monitoring programmes utilising the health status of 
insect bioindicator species.

Material and methods
To compile the bibliography, a systematic search 

was conducted using the Google Scholar database 

in July 2024, according to the PRISMA2020 guide-
lines described by Page et al. (2021). The review fo-
cused on scientific publications in English using the 
following keywords: ‘edible insects’, ‘edible insects 
as feed replacement’, ‘insects as feed replacement’, 
‘safety of edible insects’, ‘edible insect microbiota’, 
‘potential insect bioindicators’, ‘insect bioindica-
tors’, ‘edible insect regulations’ and ‘insects and 
accumulation of heavy metals’. These publications 
were organised into the following sections: Intro-
duction, Safety regulations of insect utilisation as 
food and feed materials, Controversies surround-
ing edible insects and potential contamination, In-
sects in waste bioconversion, and Potential use of 
synanthropic insects as bioindicators. Priority was 
given to studies published within the last decade.  
Additionally, European Union regulations con-
cerning the use of insects as feed materials and 
food were reviewed. For sections: Insect health 
assessment in diagnostics and toxicological stud-
ies, and Biochemical assays applied in insects 
and significance of measured parameters in insect 
health assessment, a search was conducted for 
scientific publications in English using keywords 

Table 2. Protein and fat content in the body of selected insects used in animal nutrition

Species Crude protein content, 
 g/100 g dry weight

Crude fat content,  
g/100 g dry weight References

African palm weevil  
(Rhynchophorus phoenicis) larvae*

27.50 ± 1.51 71.62 ± 7.61 Mba et al. (2017)
31.05 ± 0.55 65.35 ± 0.14 Anankware et al. (2021)

Black soldier fly  
(Hermetia illucens) larvae

  40.4 ± 1.8   33.5 ± 3.0 Józefiak et al. (2018)
  42.0 ± 0.1   36.2 ± 0.2 Huang et al. (2019)
     28 ± 1.4   33.7 ± 0.28 Matthäus et al. (2019)

Desert locust  
(Schistocerca gregaria)

     76 ± 0.9 12,97 ± 0.7 Zielińska et al. (2015)
  35.3 ± 2.6   13.3 ± 2.0 Haber et al. (2019)
45.38 ± 0.3** 12.03 ± 0.2* Mmbone et al. (2023)

Dubia roach  
(Blaptica dubia) imago

63.0 21.4 Kulma et al. (2016)
52.87 ± 1.01f 

54.32 ± 2.0m
35.49 ± 3.68f 

35.51 ± 0.71m
Lam et al. (2021)

96.9 13.3 Cerreta et al. (2022)
Jamaican field cricket  
(Gryllus assimilis) imago

  56.4 ± 2.5   23.8 ± 2.1 Józefiak et al. (2018)
  55.6 ± 1.1   11.9 ± 0.5 Mlček et al. (2018)
45.75 ± 2.25   20.0 ± 1.94 Quinteros et al. (2022)

Superworm  
(Zophobas morio) larvae

  39.0 ± 1.0   39.0 ± 4.0 Adámková et al. (2016)
  47.4 ± 2.2       36 ± 3.4 Kulma et al. (2020)
  46.8 41.7 Prachom et al. (2021)

Turkestan cockroach  
(Blatta lateralis) imago

  58.4 14.5 Kulma et al. (2016)
  54.6 ± 2.5   26.1 ± 2.3 Józefiak et al. (2018)
  77.1   17.6 Cerreta et al. (2022)

Yellow mealworm  
(Tenebrio molitor) larvae

  56.3 ± 2,5   25.3 ± 2.0 Józefiak et al. (2018)
  45.6 ± 2.8   34.5 ± 3.2 Costa et al. (2020)
  38.9 ± 0.2* 
  71.2 ± 1.1*

  45.2 ± 0.4* 
    6.1 ± 1.2*

Jajić et al. (2022)

* – for more data see Siddiqui et al., 2024; ** – depending on diet; m/f – depending on sex (m – male, f – female)
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such as ‘insect’, ‘toxicology’, ‘pest control’, ‘eco-
toxicology’, ‘insect diagnostics’ and ‘biochemi-
cal assays’. Following the identification of com-
monly used biochemical assays, further searches 
for specific parameters were conducted by com-
bining the keywords ‘parameter name’ + ‘insect’ 
to understand its role in invertebrates. Additional 
searches with ‘parameter name’ + ‘vertebrate’, 
‘fish’, and livestock species such as ‘cow’, ‘poul-
try’, ‘swine’ were carried out to compare the role 
of these parameters and identify potential differ-
ences between insects and vertebrates. Publica-
tions from the past two decades were prioritised, 
though older publications were also included after 
a rigorous evaluation of their relevance and valid-
ity of knowledge. These methods resulted in the 
retrieval of 338 reports from the Google Scholar 
database and 13 reports from the European Union 
law database (EUR-lex). Subsequently, the selec-
tion process was applied, as illustrated on Figure 1.  
Of 338 initially selected reports, 74 articles 
were excluded due to duplications or insufficient  
relevance to the keywords of interest. A further 
selection process involved reviewing 264 arti-
cles, resulting in the exclusion of 71–48 for inad-
equate language translation and 23 for insufficient 
information. Out of the 193 research publica-
tions chosen for the final analysis, 26 were later 
excluded during the writing process, as they con-
tained the same knowledge as more recent articles.  

Ultimately, a total of 167 research articles and  
13 European Union law reports were included in 
this review (Figure 1).

The essential amino acid indices (EAAi) in  
Table 3 were calculated using the adjusted EAAi 
formula of Peñaflorida (1989), employing the  
following equation:

where: ea – essential amino acid in insect (g/kg pro-
tein); EA – essential amino acid in the reference – 
chicken egg white (g/kg of protein); n – number of 
essential amino acids for humans.  

Safety regulations of insect utilisation 
as food and feed materials

Products containing insect protein raise 
many controversies, concerns and prejudices, 
especially in Europe, Canada and the United States  
of America (USA), where there is no tradition  
of eating these animals, unlike in Asia, Central 
America, South America and Africa (Hartmann 
et al., 2015; Bessa et al., 2020; van Huis, 2020). 
A major point of contention involves concerns 
about their potential health effects. Specifically, 
issues have been raised regarding their allergenic 
properties and the limited knowledge surrounding 

Figure 1. Research and screening process used to qualify manuscripts according to the PRISMA2020 guidelines (Page et al., 2021)

EAAi = √ ea1
EA1

 × ea2
 EA2

 × … × ean
EAn

n , 
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the existence and implementation of standardised 
guidelines or regulations to ensure the health and 
safety of cultured insects. These uncertainties 
underscore the need for further research and the 
dissemination of knowledge concerning regulatory 
frameworks to comprehensively address these 
issues (van Huis, 2020; Wangberg et al., 2021). 
Under European Union (EU) legislation, insects 
are classified as novel food (European Parliament, 
2015). Specific insect species authorised for sale as 
food include yellow mealworm larvae, migratory 
locust (Locusta migratoria), lesser mealworm 
larvae (Alphitobius diaperinus) and domestic cricket 
(Acheta domesticus) (EFSA Panel on Nutrition et al., 
2021a,b; European Commission, 2023a,b). Import 
of insects for human consumption is permitted 
exclusively from designated countries, namely 
Canada, South Korea, Thailand, Switzerland, the 
United Kingdom, and Vietnam, provided that 
production standards and safety criteria comply 
with EU regulatory requirements (European 
Commission, 2021a). European Union legislation 
specifies the insect species approved for farming, 
which include the common house fly (Musca 
domestica), yellow mealworm, lesser mealworm, 
domestic cricket, tropical house cricket (Gryllodes 
sigillatus), Jamaican field cricket, and silkworm 
(Bombyx mori). Additionally, the law defines 
acceptable substrates for insect rearing, explicitly 
prohibiting the use of slaughter by-products, disposal 
products, manure, and catering waste as feed 
substrates (European Commission, 2017a,b, 2021b).
The legislation further imposes restrictions on the 
levels of harmful substances in insect feed products, 
aligning these requirements with safety standards 
established for other animal feed types (European 
Parliament, 2002a). Furthermore, insects intended 
for use as food products must comply with the same 
hygiene and safety standards as conventional food 
products. These include adherence to established 
protocols for contamination control, quality 
assurance, and consumer health protection to ensure 
their suitability for human consumption (European 
Parliament, 2002b, 2004, 2005). In Canada, insects 
are similarly classified as novel foods under the 
regulatory framework and are subject to a mandatory  
registration and assessment process prior to being 
authorized for marketing. Additionally, the use of 
insects in animal feed is strictly regulated. Currently, 
only black soldier fly larvae are approved for use as 
feed, and this authorisation is limited to aquaculture 
and poultry (Sogari et al., 2019; Lähteenmäki-Uutela  
et al., 2021). In the USA, edible insects are classified 
as food additives under a regulatory framework 

that requires compliance with safety and labelling 
requirements. Only dried larvae and processed meal 
derived from black flies are approved for use as animal 
feed, and their use is restricted to salmonids, poultry 
and pigs. In contrast, in regions where insects have 
been traditionally consumed as a dietary ingredient, 
regulatory oversight of their use is often absent, 
with no formalised documentation or standards 
governing their production or consumption (Sogari  
et al., 2019; Lähteenmäki-Uutela et al., 2021). 

Controversies surrounding edible 
insects and possible contamination

In Europe, Canada and the USA, the consump-
tion of aquatic invertebrates is widely accepted and 
often regarded as uncontroversial, with certain spe-
cies considered delicacies. This contrasts with the 
consumption of terrestrial invertebrates, including 
insects, which continues to face regulatory scrutiny 
and cultural resistance. A key factor contributing to 
this distinction is the preparation practices associ-
ated with aquatic invertebrates. In most cases, as 
with vertebrates, the digestive tracts of aquatic in-
vertebrates are removed during processing, thereby 
eliminating excreta and associated microbiota from 
edible portions. Additionally, well-established cu-
linary and safety protocols for the preparation of 
aquatic invertebrates further strengthen their ac-
ceptability for human consumption (Venugopal and 
Gopakumar, 2017). However, the removal of the 
digestive tract does not eliminate all accumulated 
xenobiotics, such as heavy metals or pesticides, 
which can accumulate in the tissues of both aquatic 
invertebrates and vertebrates. For this reason, the 
consumption of aquatic invertebrates is recom-
mended to be rational and moderate (Venugopal and 
Gopakumar, 2017). In contrast, the digestive tracts 
of terrestrial insects intended for consumption are 
typically left intact during processing (Kierończyk 
et al., 2022). Consequently, these digestive systems 
may contain substantial quantities of potentially 
harmful microbiota, including mesophilic aerobes,  
Enterobacteriaceae, bacterial endospores or spore-
forming bacteria, lactic acid bacteria, psychrotrophic 
aerobes, as well as yeasts and moulds (Martínez-
Girón et al., 2017; Garofalo et al., 2019). Within 
these groups, species from the genera Cronobacter,  
Bacillus, Clostridium, Pseudomonas, Staphylococ-
cus, Streptococcus, Vibrio, Escherichia, Serratia, 
Proteus, Yersinia, Campylobacter, Salmonella, Lis-
teria, Aspergillus, Penicillium, Alternaria, Chaetomi-
um, Mucor, Phoma, Drechslera, and Fusarium have 
been identified as potentially pathogenic or harmful. 



B. Łosiewicz et al.	 7

Among these, certain species within the genera As-
pergillus and Penicillium, which may be present in 
the insect microbiota, are known to produce myco-
toxins. For example, Aspergillus niger and A. flavus 
produce aflatoxins, A. ochraceus synthesises ochra-
toxins, while Penicillium citrinum and P. verrucosum 
produce citrinin, with the latter also capable of pro-
ducing ochratoxins. Mycotoxins, such as aflatoxins, 
are thermally stable secondary metabolites synthe-
sised by specific fungal species. Their chemical sta-
bility at elevated temperatures renders them resistant 
to degradation during conventional cooking or heat-
processing methods. As a result, mycotoxins persist in 
food products, with the potential for bioaccumulation 
or transfer across trophic levels within the food chain, 
posing significant health risks to both animals and 
humans. Additionally, certain bacterial species, e.g.,  
Bacillus spp., Clostridium spp., and Staphylococcus 
spp. (including S. aureus), as well as fungal species 
such as Debaryomyces hansenii have been detected 
in ready-to-eat insect-based products (Garofalo et al., 
2019). These microorganisms, present in the diges-
tive tract at the time of slaughter, pose a potential food 
safety risk even when processing and preparation are 
carefully managed. Harmful substances absorbed, ac-
cumulated, or produced during an insect’s lifecycle 
can remain within its tissues. Among these substances 
are metals, including heavy metals, whose concentra-
tions in the insect’s body can increase proportionally 
with their environmental availability (Moniello et al., 
2019; Okrutniak and Grześ, 2021). In regions with  
a historical tradition of entomophagy, such as Mexi-
co, insects are often harvested from the wild, where 
their diet and environmental exposure are not regulat-
ed or controlled, potentially leading to increased con-
tamination risks (van Huis et al., 2013; Lähteenmäki-
Uutela et al., 2021). However, Mexican regulations 
govern harvesting areas, permitting insect collection 
only in organic production zones or regions with 
minimal or no human activity, where environmental 
contamination is presumably lower (Lähteenmäki-
Uutela et al., 2021). As a result, the bioaccumulation 
of harmful substances poses a significant threat to 
both livestock and human health when these insects 
are consumed directly or used as feed. Considering 
the nutritional potential of insects and the prospect of 
a lower environmental impact associated with their 
farming, the number of studies exploring insects as 
alternative food sources has markedly increased 
in recent decades, resulting in the need to estab-
lish parameters and standardised methods for insect 
health testing (van Huis, 2020; Beyers et al., 2023).  
In parallel, the development of such methods would 
support and improve regulations, as well as produc-

tion systems such as GMP+ and HACCP, which are 
designed to ensure the quality, as well as chemical 
and microbiological safety of the final product.

Insects in waste bioconversion
Monitoring insect health is essential when they 

are utilised to bionconvert various types of human 
waste, particularly if their future use as food or 
feed becomes permissible. As scientific knowledge 
advances and appropriate methodologies are de-
veloped, insects may hold significant potential for 
sustainable applications in food and feed produc-
tion systems. An example of such use is the rearing 
of black soldier fly larvae on agro-residues, plant- 
derived waste, manure or food waste (Fu et al., 
2022; Beyers et al., 2023). The use of bio-waste 
for insect farming represents an ecologically sus-
tainable approach, consistent with the principles 
of sustainable agricultural development. This con-
cept promotes a closed-loop agricultural system by 
maximising resource efficiency, reducing the envi-
ronmental impact compared to conventional meth-
ods, and further encouraging the use of by-products 
generated during insect rearing (Bulak et al., 2020; 
Gasco et al., 2020; Houben et al., 2020; van Huis, 
2020; Fu et al., 2022; Beyers et al., 2023). Another 
example of the use of insects for waste disposal is 
research focusing on the rearing of Tenebrionidae 
on various types of plastics or even graphene ox-
ide (Bulak et al., 2021; Liu et al., 2022). In such 
cultures, insects are fed only inorganic materials, 
such as various forms of plastic or a mixture of plas-
tic and bran (Yang et al., 2018; Bulak et al., 2021; 
Lou et al., 2021; Peng et al., 2021). Feeding insects 
with a mixture of bran and plastic was found to pre-
vent cannibalism, promote larval development and 
increase biodegradation (Yang et al., 2018; Lou et 
al., 2021; Peng et al., 2021). The biodegradation  
capacity of insects is related to the bacteria resid-
ing in their digestive tracts, which possess the  
enzymatic capacity to degrade and utilise inorganic 
materials (Yang et al., 2018; Lou et al., 2021; Peng et 
al., 2021). However, such biodegradation is not fully 
efficient and, depending on the primary material and 
differences in the composition of the microbiota pop-
ulation, undigested polymers are excreted with frass. 
While such a diet allows the larvae to develop prop-
erly to the imago stage, many studies have not veri-
fied the effect of a diet consisting of plastic on insect 
health, and in some cases, even on their growth rate. 
Meanwhile, bacteria capable of degrading inorgan-
ic polymers have been identified and isolated from 
the digestive tracts of insects (Brandon et al., 2021;  
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Park et al., 2023). This discovery may lead to the 
potential replacement of insects with isolated or 
genetically modified bacterial strains for plastic 
bioconversion.

Potential use of synanthropic insects 
as bioindicators

Insects, due to their relatively short life cycles, 
widespread distribution, remarkable species di-
versity, and integral roles in ecosystems, serve as 
highly suitable subjects for research into ecosys-
tem functioning and health. Consequently, they are 
frequently employed as model organisms or bioin-
dicators. Among these, social insects have been 
particularly recognised as potential bioindicators 
in ecological studies (Skaldina and Sorvari, 2017). 
The increasing synanthropisation of certain insect 
species, such as the black garden ant (Lasius niger), 
which frequently nests in close proximity to hu-
man habitats (Czechowski et  al., 2012), or silver-
fish (Lepisma saccharina), which inhabits human 
dwellings (Joshi et al., 2020), may predispose such 
species to be used as bioindicators to monitor the 
immediate human environment. This is particularly 
important where interaction with xenobiotics may 
occur, as exemplified by the ability of ants to ac-
cumulate heavy metals in their bodies (Okrutniak 
and Grześ, 2021). Therefore, careful selection of re-
search parameters and the development of standard-
ised, straightforward methodologies are essential to 
enable effective monitoring of human-associated 
environments using insect bioindicators. 

Insect health assessment in 
diagnostics and toxicological studies

Diagnostic methods for assessing the health sta-
tus of insects have primarily been developed for bees 
(Apis mellifera), focusing on evaluating their gen-
eral physiological condition or detecting viral infec-
tions (Hartfelder et al., 2013; Huang et al., 2021). In 
comparison, the health of other insect species has 
been extensively investigated in toxicological stud-
ies, although standardised methodologies are lack-
ing. These type of studies typically aim to identify 
insecticides effective against pest species, includ-
ing termites (Psammotermes hypostoma) (Allam 
et al., 2022), (Odontotermes formosanus) (Nasser 
et al., 2024), (Coptorermes curvignathus) (Kadir 
et al., 2023), poultry red mites (Dermanyssus gal-
linae) (Sioutas et al., 2023), red imported fire ants  
(Solenopsis invicta) (Zheng et al., 2021; Yang et al., 
2023; Ma et al., 2024), pavement ants (Tetramorium 

immigrans) (Barrett et al., 2020), leaf-cutting ants 
(Atta opaciceps, A. sexdens, A. sexdens rubropi-
losa, Acromyrmex lobicornis) (Buteler et al., 2018; 
Rocha et al., 2018), red flour beetles (Tribolium cas-
taneum) (Alif Alisha and Thangapandiyan, 2019), 
pink stem borers (Sesamia inferens) (Metwally  
et al., 2021), cotton leafworms (Spodoptera lit-
toralis) (El-Ashmouny et al., 2022; Abdou and 
Zyaan, 2023), American bollworms (Helicoverpa 
armigera) (Asghar et al., 2022), and desert locusts 
(Schistocerca gregaria) (Teleb et al., 2012). Toxi-
cological research also focuses on the effects of 
xenobiotics and widely used agricultural chemi-
cals on ecologically important insects critical to 
ecosystem health. Such studies often target honey 
bees (Özkan et al., 2015; Heard et al., 2017; Tomé 
et al., 2020), Asian weaver ants (Oecophylla smar-
agdina) (Sheeja et al., 2020) black garden ants (La-
sius niger) (Cuvillier-Hot et al., 2014), as well as 
important model species such as fruit flies (Dros-
ophila melanogaster) (Ávalos et al., 2015), greater 
wax moths (Galleria mellonella) (İçen et al., 2005; 
Eskin et al., 2022), or silkworms (Bombyx mori) 
(Asghar et al., 2022). In addition to mortality rates 
and phenotypic alterations, toxicological stud-
ies frequently assess the impact of substances by 
analysing changes in genetic markers, enzymatic 
activity, and metabolite concentrations. These pa-
rameters provide valuable information regarding 
physiological disorders caused by xenobiotics. De-
veloping methodologies to monitor the physiologi-
cal state of reared insects could therefore benefit 
from the knowledge gained through toxicological 
research, helping to identify the most effective in-
dicators. Biochemical assays, such as the measure-
ments of enzymatic activity, appear particularly 
promising for this purpose due to their cost-effec-
tiveness, procedural simplicity, and the availabil-
ity of reagent kits that streamline performance and 
reduce time requirements. Additionally, these tests 
necessitate a relatively modest laboratory infra-
structure, making them widely accessible for both 
research and diagnostic applications.

Biochemical assays applied on 
insects and significance of measured 
parameters in assessing insect health

Biochemical analyses in vertebrates are typi-
cally conducted using sample types, such as blood, 
plasma, serum, or tissue (Puppel et al., 2022;  
Kamaszewski et al., 2023; Łosiewicz and Szudrowicz, 
2024). Blood sampling and subsequent biochemical
 assays are standard practices in vertebrate diagnostics. 
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In contrast, the relatively small size of insects 
presents considerable challenges in isolating organs 
or tissues across many species. For smaller insects, 
this process often requires the use of specialised 
equipment, such as microscopes or dissection tools, 
while in some cases, isolation of specific organs or 
tissues is highly impractical or even impossible. 
As a result, biochemical determinations in insects 
are often carried out on whole-body samples, 
individual dissected tissues, or eluates obtained 

from insect surface proteins  (Table 4). These 
methods usually require the sacrifice of the insect, 
making non-lethal sampling difficult to perform. 
While haemolymph can be extracted without killing 
the insect, the volume obtained is very limited, e.g. 
only 0.5–1 µl can be recovered from a honey bee, as 
reported by Huang et al. (2021). Thus, conducting 
comprehensive biochemical analyses often requires 
the collection and sacrifice of a large number of 
individual insects. 

Table 4. Biochemical markers that are determined in insects

Species Used sample Determined enzymatic activity or metabolite/
nutrient concentration References

Asian weaver ant  
(Oecophylla smaragdina)

Worker ants CAT, GSH, GST, MDA, SOD Sheeja et al. (2020)

Cotton leafworm (Spodoptera 
littoralis)

Fourth instar larvae ACP, AChE, ALP, ALT, AST, chitinase, 
α-esterase, β-esterase, total carbohydrates, total 
lipids, total proteins, digestive enzymes, PO

Assar et al. (2016)

Desert locust  
(Schistocerca gregaria)

Hemolymph and fat bodies of fifth 
nymphal instar and newly emerged 
adults

ALP, ALT, AST Teleb et al. (2012)

Diamondback moth  
(Plutella xylostella)

Second instar larvae AChE, CarE, GST, Gong et al. (2013)

Greater wax moth  
(Galleria mellonella)

Larvae AChE, ALT, AST, MDA İçen et al. (2005)

Greater wax moth  
(Galleria mellonella)

Hemolymph of fourth instar larvae AChE, CAT, SOD Eskin et al. (2022)

Honey bee  
(Apis mellifera)

Hemolymph and body surface 
elution of worker bees

ALP, ALT, AST, total protein, protease, inhibition 
of proteases

Łoś and Strachecka 
(2018)

Honey bee  
(Apis mellifera)

Hemolymph of forager bees Glucose, trehalose, total lipids, total protein, 
vitellogenin

Tlak Gajger et al. 
(2020)

Sunn pest  
(Eurygaster integriceps)

Hemolymph and fat bodies of 
imagoes

AST, ALT, ACP, ALP, EST, GST, glycogen, LDH, 
trehalose, total lipids, total protein, uric acid

Zibaee et al. (2011)

Pea aphid  
(Acyrthosiphon pisum)

Groups of ten imagoes Glucose, trehalose Wang et al. (2021)

Ponerine ant  
(Harpegnathos saltator)

Gamergates, worker ants CAT, GPX, GSH, GSSG, GST, SOD Schneider et al. 
(2011)

Red flour beetle  
(Tribolium castaneum)

Imago ALT, AST, glucose, total lipids, total protein Hashem et al. 
(2020)

Red palm weevil  
(Rhynchophorus ferrugineus)

Fat body and hemolymph of fifth 
instar larvae

ACP, ALP, ALT, AST Hamadah (2019)

Texas field cricket  
(Gryllus texensis)

Hemolymph of imago Total lipids Adamo (2010)

Tobacco cutworm (Spodoptera 
litura) and cotton bollworm 
(Helicoverpa armigera)

100 mg of larvae’s Glucose, GST, LDH, protein oxidation, TBARS Dixit et al. (2017)

Yellow mealworm  
(Tenebrio molitor)

Midgut of larvae and imago α-amylase, glucosidase, proteases, inhibition of 
α-amylase and proteases

Dastranj et al. 
(2013)

Yellow mealworm  
(Tenebrio molitor)

Cell culture from imago and larvae 
gut

Cytochrome P450, EST, GST Pedersen et al. 
(2020)

CAT – catalase, GSH – glutathione, GST – s-glutathione transferases, PO – phenoloxidase, MDA – malondialdehyde, SOD – superoxide 
dismutase, ACP  – acid phosphatase, AChE  – acetylcholine esterase, ALP  – alkaline phosphatase, ALT  – alanine aminotransferase,  
AST – aspartate aminotransferase, CarE – carboxyesterase, LDH – lactate dehydrogenase, GPX – glutathione peroxidases, GSSG – oxidised 
glutathione, EST – esterases, TBARS – thiobarbituric acid reactive substances
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As in vertebrates, enzymatic activity in the in-
sect body is correlated with many factors such as 
age, sex, developmental stage or changes in the  
external environment. The relevance of specific  
enzymatic activity parameters or the concentration of 
a particular substance in the tissue under study may 
vary in their usefulness for evaluating the health sta-
tus of insects.

Metabolite and nutrient levels, such as proteins, 
sugars, and lipids, provide limited diagnostic value 
for assessing insect health due to their susceptibility 
to variations influenced by nutritional status and hy-
dration levels (Lee et al., 2008). 

However, these parameters are also dependent 
on the physiological state of the insect and, when 
combined with specific enzymatic activity mark-
ers, they can provide a more precise assessment of 
overall insect health. Moreover, the composition 
and concentration of metabolites, including lipids 
and nutrients, in the haemolymph are influenced 
by the insect-associated microbiota, that may also 
be present in the haemolymph (Blow and Douglas, 
2019). Total protein content in insect homogen-
ates can be a useful indicator for evaluating the ef-
fects of a diet on insect development. Nevertheless, 
when a standardised diet is used, total protein lev-
els alone may not provide comprehensive informa-
tion about insect health. Conversely, fluctuations in 
total protein concentration in the haemolymph may 
indicate physiological conditions such as dehydra-
tion or inflammation. Additionally, protein levels 
in the haemolymph can be influenced by dietary 
composition, thereby complicating the interpre-
tation of these results (Lee et al., 2008; Łoś and 
Strachecka, 2018). Similarly, haemolymph sugar 
concentrations are largely dependent on the insect’s 
diet. The primary sugar present in insect haemo-
lymph is trehalose, which functions as the main 
energy carrier and a glucose reservoir (Yamada et 
al., 2018). Apart from its metabolic role, trehalose 
acts as a cellular and protein bioprotectant under 
extreme environmental stress conditions, including 
thermal stress, oxidative damage, desiccation, hy-
poxia, and cold exposure (Elbein et al., 2003). Tre-
halose concentration in the haemolymph has also 
been shown to influence feeding behaviour, dietary 
preferences, and feed utilisation efficiency, high-
lighting its multifaceted role in insect physiology 
and survival (Wang et al., 2021). According to re-
search by Jones et al. (1981), trehalose concentra-
tion also affects signalling pathways that regulate 
larval development in tobacco hornworm/tobacco 
hawk moth (Manduca sexta). While glucose is also 

present alongside trehalose in insect haemolymph, 
its level is significantly lower. Similar to trehalose, 
glucose levels are regulated in response to the in-
sect’s satiety state, with concentrations decreasing 
during periods of starvation and increasing follow-
ing food intake (Tellis et al., 2023). Additionally, in 
certain insect species, haemolymph glucose levels 
have been shown to influence feeding behaviour 
(Wang et al., 2021). Insects synthesise and store 
glycogen in various tissues, including the fat body 
and muscles. Glycogen levels in insects fluctuate 
similarly to vertebrates, in which the liver (fat body 
in insects) and muscle glycogen act as sugar stor-
age for different physiological purposes. Muscle 
glycogen is utilised to produce energy in the form 
of adenosine triphosphate through glycolysis, while 
fat body/liver glycogen acts as a storage and distri-
bution centre of glucose and, uniquely in insects, 
trehalose, which is transported throughout the body 
via the haemolymph (Yamada et al., 2018).

Total body lipid content, along with total pro-
tein content, is a well-established and widely uti-
lised parameter for evaluating the nutritional value 
of insects. Analysis of the fatty acid class profile 
in insects is used especially in experiments involv-
ing dietary and nutritional applications (Aguilar, 
2021). Lipid content in the haemolymph can also be 
used to understand the relationship between stress 
response pathways and immune response signal-
ling (Adamo, 2010). Insects mainly synthesise and 
store lipids in the fat body, from where they are 
mobilised and transported through the hemolymph 
to meet metabolic demands (Toprak et al., 2020).  
Concentration of metabolites and nutrients in both 
vertebrates and insects can offer valuable informa-
tion on health status (Bujak et al., 2015; Sullivan et 
al., 2016; Łosiewicz and Szudrowicz, 2024).

Enzyme activity parameters are more specific 
indicators of insect health, as they are controlled 
by multiple signalling pathways play a critical role 
in maintaining homeostasis and supporting various 
physiological functions (Dolezal et al., 2019). For 
this reason, enzyme activity assays provide more 
precise information about the insect’s health com-
pared to metabolite and nutrient levels. Commonly 
determined enzymes in biochemical panels include 
phosphatases, transaminases, digestive enzymes, 
detoxifying enzymes, free radical-inactivating en-
zymes, and those involved in immune response.

Phosphatases are enzymes that hydrolyse phos-
phate monoesters in acidic or alkaline environment 
(Yi and Adams, 2001). In insects, acid phosphatase 
(ACP) is active in the intestine, Malpighian tubules, 
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and is also found in organs and tissues undergoing 
cytolysis (Yi and Adams, 2001; Hamadah, 2019). In 
contrast, alkaline phosphatase (ALP) is a brush-bor-
der membrane enzyme, with its highest activity in tis-
sues engaged in active membrane transport, such as 
intestinal epithelial cells and Malpighian tubules (Yi 
and Adams, 2001). ALP also plays a role in tissue cy-
tolysis during insect development (Hamadah, 2019). 
The cytolytic properties of ACP and ALP make them 
effective markers for detecting cytolysis, particularly 
when induced by exposure to xenobiotics.

Transamination is the process by which amino 
groups are removed from amino acids and transferred 
to keto acid, resulting in the formation of a new 
amino acid from the original keto acid and the keto 
acid form of the initial amino acid (Litwack, 2022). 
This process occurs in many insect tissues, especial-
ly those containing glutamate, aspartate, and ala-
nine (Teleb et al., 2012). It is primarily mediated by 
alanine aminotransferase (ALT) and aspartate ami-
notransferase (AST), enzymes that play a crucial 
role in amino acid biosynthesis, nitrogenous waste 
metabolism, and gluconeogenesis. These enzymes 
are integral to both protein anabolism and catabo-
lism, linking carbohydrate and protein metabolism. 
Their activity is dynamic and subject to alteration 
under various physiological and pathological condi-
tions (Nath et al., 1997). In healthy insects, the ac-
tivity of ALT and AST in the haemolymph typically 
increases during maturation and aging. However, 
exposure to insecticides can lead to a reduction in 
ALT and AST activity, thereby disrupting essential 
metabolic cycles. This decline may also reflect a 
decrease in nutritionally significant proteins, which 
are required for the synthesis of amino acids nec-
essary for tissue development, secretion processes, 
and energy production (Hashem et al., 2020). As in 
vertebrates, elevated ALT and AST activity in in-
sects can indicate damage not only to the liver/fat 
body, respectively, but also other tissues (Nath et 
al., 1997; Puppel et al., 2022; Łosiewicz and Szud-
rowicz, 2024), which can be used to assess immune 
status (Hashem et al., 2020).

Digestive enzymes include amylases, glu-
cosidases, proteinases, and lipases, each playing 
a specific role in the breakdown of carbohydrates, 
proteins, and lipids, respectively. Amylases are 
responsible for the hydrolytic breakdown of poly-
saccharides, primarily starch and glycogen, into 
maltose, maltotriose, and maltodextrins. Their ac-
tivity is influenced by the insect’s diet, reflecting the 
adaptation of digestive processes to available food 
sources. Products generated by amylase activity are 

subsequently hydrolysed by glucosidases to glucose 
(Da Lage, 2018). Proteinases represent the predom-
inant group of hydrolytic enzymes in insects, play-
ing a vital role in various physiological processes. 
They are mainly involved in the digestion of pro-
teins, activation of proenzymes, release of physi-
ologically active peptides, and activation of the 
complement. Additionally, proteinases contribute 
to inflammatory processes, underscoring their im-
portance in both metabolic and immune functions. 
They are classified by their catalytic mechanism 
into serine proteinases, cysteine proteinases, aspar-
tate proteinases and metalloproteinases, of which 
serine and cysteine proteinases are the main classes 
of proteinases in phytophagous insects (Macedo 
and Freire, 2011). Lipases play key roles in insects, 
facilitating lipid acquisition, storage, and distribu-
tion, while also being involved in many physiologi-
cal processes (Santana et al., 2017). The activity of 
digestive enzymes, including lipases, may be influ-
enced by dietary factors, including inhibition po-
tentially caused by xenobiotics produced by plants 
in an area under study (Macedo and Freire, 2011; 
Dastranj et al., 2013). Moreover, the activity of di-
gestive enzymes can be modulated by the insect’s 
microbiota and developmental stage (Dastranj et al., 
2013; Gandotra et al., 2018).

Lactate dehydrogenase (LDH) catalyses the re-
versible conversion of pyruvate to lactate along with 
the interconversion of reduced nicotinamide ad-
enine dinucleotide and nicotinamide adenine dinu-
cleotide. LDH facilitates this process in the absence 
or insufficient oxygen levels. Elevated LDH levels 
are associated with tissue breakdown (Zibaee et al., 
2011), making it a reliable indicator of tissue and 
organ damage in in vitro cultures and animal stud-
ies. Research on insects has shown that LDH activ-
ity in muscles is generally low in most species, and 
that α-glycerophosphate dehydrogenase (GPDH) 
shows a higher activity, and thus plays a greater role 
in the metabolic pathways of muscle function (Zebe 
and McShan, 1957; Kitto and Briggs, 1962). Inter-
estingly, species with higher LDH activity in mus-
cles tend to have lower GDH I activity (Zebe and 
McShan, 1957). These species include insects that 
rely on strong legs rather than wings for locomotion 
(Kitto and Briggs, 1962). LDH activity measure-
ments has been utilised as an indicator of exposure 
to chemical stress in toxicological studies (Zibaee  
et al., 2011; Kissoum and Soltani, 2016).

Chitinases are enzymes that hydrolyse chitin,  
a major structural component of arthropod exo-
skeletons and fungal cell walls. These enzymes are 
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found in various organisms, including bacteria, pro-
tists, fungi, plants and animals, such as arthropods 
and mammals. Chitinases perform various func-
tions, including involvement in digestion, arthropod  
moulting, immunity and pathogenicity. The major-
ity of insect chitinases are endochitinases, which are 
essential for normal insect growth and development. 
Their concentration increases significantly before 
moulting (Arakane and Muthukrishnan, 2010), 
when the insect sheds its old chitinous exoskeleton 
and replaces it with a new, larger one.

Detoxification enzymes such as cytochrome 
P450 enzymes, esterases (EST), including carbox-
yesterase (CarE), acetylcholine esterase (AChE), 
α-esterase, and β-esterase, as well as S-glutathione 
transferases (GST) represent another key group 
studied in insect health research. These enzymes 
form the three primary systems responsible for the 
detoxification of xenobiotics (Saha et al., 2012). 

As in vertebrates, cytochrome P450 enzymes 
in insects constitute a diverse group of oxidases in-
volved in the metabolism of many substances. These 
enzymes can be found in virtually every insect tissue 
and they perform various important functions, rang-
ing from participation in the synthesis and degrada-
tion of hormones to the metabolism of xenobiotics. 
Assessing cytochrome P450 enzymes typically in-
volves determining the expression levels of genes 
encoding them, as it provides information about the 
regulation of their synthesis (Piechowicz et al., 2021; 
Xiong et al., 2022; Koto et al., 2023); however, enzy-
matic measurements are also frequently employed in 
research (Xiong et al., 2019; Pedersen et al., 2020). 

Esterases, similarly to cytochrome P450 en-
zymes, are present in many insect tissues and play 
a role in the metabolism of xenobiotics in the insect 
body (Sezer Tuncsoy et al., 2019). These enzymes 
hydrolyse metabolised substances and may also 
participate in the digestion of ingested food (Bhatt 
et al., 2020). The specific role of individual EST in 
metabolism is not fully elucidated and requires fur-
ther research into their functions in substance me-
tabolism (Jackson et al., 2013). However, certain 
EST can be distinguished based on their substrate 
specificity and physiological roles. For instance, 
AChE is responsible for the hydrolysis of acetyl-
choline into choline and acetate, playing a criti-
cal role in the regulation of the cholinergic system 
(Sezer Tuncsoy et al., 2019). Additionally, juvenile 
hormone EST, a member of the carboxylesterase 
family, is involved in the metabolism of juvenile 
hormone, a key regulator of insect development and 
reproduction (Kamita and Hammock, 2010). 

S-glutathione transferases are a group of de-
toxifying enzymes present in both insects and ver-
tebrates. These enzymes catalyse the conjugation 
of reduced glutathione (GSH) to electrophilic sub-
strates in biotransformation processes. The result-
ing conjugates are subsequently excreted from the 
cell via the glutathione S-conjugate secretion pump 
and transformed into excretable mercapturic acids 
(Simon, 1996). In addition, s-glutathione transferas-
es are also involved in the oxidative stress response 
by catalysing hydroperoxides (ROOH) reduction 
reactions (without hydrogen peroxide (H2O2) as  
a substrate) (Felton and Summers, 1995). 

Enzymes comprising the three main systems 
involved in the detoxification of xenobiotics play  
a crucial role in insect resistance to insecticides. For 
this reason, their impact on the effectiveness of ar-
tificial insecticides (Gong et al., 2013; Xiong et al., 
2019, 2022; Jaffar et al., 2022), as well as on the ef-
ficiency of insecticides naturally secreted by plants, 
is often evaluated (Saha et al., 2012). Additionally, 
tests measuring the activity of detoxification en-
zymes are used to assess the impact of xenobiotics, 
such as nanoparticles, with GST activity commonly 
studied due to its involvement in the oxidative stress 
response (Sezer Tuncsoy et al., 2019; Sheeja et al., 
2020; Muhammad et al., 2022). Moreover, the in-
sect’s microbiota and its associated detoxifying en-
zymes may also significantly contribute to its pesti-
cide resistance (Jaffar et al., 2022).

The generation of oxygen free radicals in the 
mitochondria is essential for cellular function. 
However, to prevent their uncontrolled action, 
which can lead to the oxidation of fats, proteins, and 
ultimately cell death, organisms have developed de-
fence mechanisms. Antioxidant defences in insects 
consist of catalase (CAT), glutathione peroxidases 
(GPX), glutathione reductase (GR), superoxide 
dismutase (SOD) and S-glutathione transferases  
(Felton and Summers, 1995). Additionally, GST is 
also involved in detoxification (Simon, 1996). 

Superoxide dismutase catalyses the conversion 
of oxygen radicals into hydrogen peroxide, which 
is subsequently converted to water by catalases 
or glutathione peroxidases (Felton and Summers, 
1995; Paes et al., 2001). Glutathione peroxidases 
not only catalyse the reduction of hydrogen perox-
ide, but also reduce lipid hydroperoxides (Felton 
and Summers, 1995; Dias et al., 2016). Similarly, 
s-glutathione transferases catalyse the reduction 
reaction of organic peroxides. In both cases, glu-
tathione (GSH) is utilised and converted into oxi-
dised glutathione (GSSG). Glutathione  levels are 
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then restored through the conversion of GSSG by 
glutathione reductase (Felton and Summers, 1995). 
Simultaneously, a lack of GPX enzyme activity has 
been observed in certain insect species, accompa-
nied by abnormal distribution of CAT and GR in 
the cells. These findings suggest an evolutionary 
adaptation or compensatory mechanism to mitigate 
the lack of GPX (Ahmad et al., 1988). In addition, 
these enzymes are also involved in neutralising the 
action of free radicals that have been absorbed from 
the environment (Paes et al., 2001). CAT, GPX, GR, 
GST and SOD are also frequently used as indica-
tors of oxidative stress induced by xenobiotics in 
both insects (Sezer Tuncsoy et al., 2019; Muham-
mad et al., 2022) and vertebrates (Anreddy, 2018; 
Kamaszewski et al., 2023). 

Additional markers of oxidative stress include 
the determination of antioxidants such as GSH,  
a well-known tripeptide that reacts directly or acts as 
a co-substrate in oxidative stress defence reactions 
(Paes et al., 2001), as well as uric acid, GSSG, or the 
measurements of oxidised protein and lipid levels. 
When antioxidant enzymes are ineffective, reactive 
oxygen species (ROS) accumulate in the cell, initi-
ating reactions with proteins, nucleic acids, and li-
pids (Orčić et al., 2017). Free radicals, in particular, 
react with polyunsaturated fatty acids, such as cell 
membrane phospholipids, leading to the formation 
of lipid peroxides. The concentration of peroxidised 
lipids is commonly measured using one of two meth-
ods: the quantification of malondialdehyde (MDA) 
or the measurement of thiobarbituric acid reactive 
substances (TBARS). MDA is a reactive compound 
formed during lipid peroxidation and is widely con-
sidered a reliable marker of oxidative stress (İçen  
et al., 2005; Orčić et al., 2017). Similarly, TBARS 
are products of lipid peroxidation, formed through 
the reaction of thiobarbituric acid with aldehydes 
such as MDA and hydroxynonenals, which rep-
resent the breakdown of peroxidation products  
(Ahmad et al., 1995). 

In insect organisms, uric acid is used as a nitrog-
enous waste, nitrogen storage, pigment, antioxidant 
(Tasaki et al., 2017), and potentially as a signalling 
molecule (Weihrauch and O’Donnell, 2021). Uric 
acid synthesis is one of the most common mecha-
nisms to avoid the toxic effects of ammonia derived 
from the catabolism of proteins and nucleic acids in 
insects; however, some species not subjected to wa-
ter stress can excrete ammonia directly. On the other 
hand, certain dipterans can further metabolise uric 
acid to allantoin or urea (Weihrauch and O’Donnell, 
2021). The two main sources of uric acid synthesis 

in insects are the uricotelic pathway, where proteins 
provide the nitrogen source, and purine degradation 
metabolism. Moreover, uric acid inhibits the gen-
eration of oxygen free radicals in insects by chelat-
ing metals and scavenging free radicals once they 
are generated. In addition, it has the ability to form 
stable coordination complexes with iron ions which 
reduces free radical production and limits ascorbate 
oxidation (Weihrauch and O’Donnell, 2021). In  
a study conducted by Tasaki et al. (2017), termites 
(Reticulitermes speratus) showed higher antioxi-
dant activity than other species, which could be re-
lated to their longevity compared to other insects. 
Moreover, the longer they were isolated from the 
colony, and thus exposed to UV light, the more they 
turned white, which was associated with higher 
uric acid levels and significantly lower free radi-
cal concentrations, as well as enhanced antioxidant 
activity. In vertebrates, uric acid is also a nitroge-
nous waste product, but it is also known for its ben-
eficial antioxidant and neuroprotective properties  
(Álvarez-Lario and Macarrón-Vicente, 2010).

Vitellogenin and phenoloxidase (PO) are em-
ployed as markers of immune response in insects. 
Vitellogenin is an important animal protein that is 
not only a major precursor of yolk proteins in in-
sects and other oviparous species (Tufail et al., 
2014), but also has immune functions and anti-
oxidant properties by neutralising free radicals 
(Salmela and Sundström, 2017). Its antioxidant ac-
tion is known to contribute to the longer lifespan 
of queens and long-lived workers in honey bees 
(Salmela and Sundström, 2017; Wu et al., 2021).  
Additionally, vitellogenin possesses anti-inflamma-
tory properties by binding to damaged cells through 
lipids, especially phosphatidylserine. Similar to fish 
vitellogenin, insect vitellogenin binds to bacteria 
by interacting with their lipoproteins. In addition, it 
interacts directly with insect immune cells–haemo-
cytes–likely providing them with zinc ions neces-
sary for their proper functioning (Salmela and Sund-
ström, 2017). Mammals, including humans, have 
homologous proteins involved in fat metabolism and 
immunity, although they are not involved in repro-
duction (Salmela and Sundström, 2017). Phenoloxi-
dase is an enzyme with a crucial function in insect 
humoral defence. It is well documented as a copper-
containing enzyme and is also found in microorgan-
isms, plants and other animals (Marieshwari et al., 
2023). Phenoloxidase is involved in melanin forma-
tion (Assar et al., 2016), sclerotisation, opsonisation 
and wound healing. In addition, in insects, it plays 
key roles during moulting, non-self/self-recognition, 
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phagocytosis and nodule formation (Marieshwari 
et al., 2023). In insects, PO is typically present in 
its zymogen form as profenoloxidase (proPO), 
which is proteolysed by serine protease to active 
PO. Interestingly, serine protease is also found in 
zymogen form and requires activation through  
a protease influx induced by infection. This mode 
of proPO activation mechanism helps prevent tis-
sue damage caused by PO, which in its active form 
can react even with oxygen free radicals produced 
during normal metabolism. Prolonged activation 
of proPO leads to oxidative damage (Marieshwari  
et al., 2023). 

Summary

The health status of insects used in the 
production of insect meal for feed is a  frequently 
overlooked aspect in both husbandry practices and 
research. Considering the potential impact of insect 
health on the quality of feed and, consequently, on 
livestock welfare, we have evaluated biochemical 
methods commonly applied in insect research to 
determine their utility for assessing insect health. 
Analyses conducted on individual insect tissues 
provide the most detailed and specific information 
about the physiological condition of insects. 
However, biochemical assays performed on whole 
insects or even pooled groups of individuals 
can also yield reliable results, offering faster 
processing and applicability to species of any size. 
For both approaches, it is crucial to randomly 
select a  representative group of insects from the 
cultured population, as sampling typically requires 
sacrificing the insects. An exception is the collection 
of small volumes of haemolymph (0.5–1 µl), though 
this amount may be insufficient for comprehensive 
biochemical analyses. Measurements of metabolites 
and nutrients, while less directly informative about 
overall insect health, serve as valuable supplements 
to assays determining enzymatic activity and levels 
of substances involved in antioxidant or immune 
defence. Collectively, these methods would provide 
a  robust framework for monitoring the health of 
insects used in feed production and experiments. 

Conclusions
In conclusion, we propose that biochemical pan-

els for diagnosing insect health status should include 
assays for the activity of enzymes, such as phos-
phatases, transaminases, antioxidant enzymes, and 

detoxifying enzymes, alongside markers associated 
with immune responses. These tests are particularly 
critical in cases where xenobiotic intoxication or in-
fection by insect pathogens is suspected. Addition-
ally, the measurement of total protein content should 
be included to standardise samples, with the possi-
bility of adding other metabolites based on specific 
research or diagnostic requirements.
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