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Introduction
The accurate description of lactation curves is 

an interesting topic for breeding and management 
purposes in dairy farming. Lactation curves are 
also an efficient tool for the genetic improvement 
of milk production traits. In the last two decades,  
a great deal of effort has been devoted to investi-
gating the direct use of test day (TD) yields in the 
genetic evaluation of dairy cattle (Otwinowska-
Mindur et al., 2013) and genetic merit based on 
test day models was proposed (Ptak and Schaeffer, 
1993). Several methodologies have already been 

presented  for genetic evaluation of production traits 
in dairy cattle based on test day records (Jaffrezic 
et al., 2002). Currently, lactation curve fit is used 
for modelling the random part of the lactation curve 
in the random regression models, the first functions 
applied were the Ali and Schaeffer and the Wilmink 
models (Bohmanova et al., 2008). More recently, 
Legendre polynomials (Misztal, 2006) and spline 
models (Meyer, 2005) have been used as the basic 
function in many analyses by random regression 
models.

The use of individual curves to select the most 
accurate model to fit the lactation curve is more  
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efficient than the use of average curves. Mean  
lactation curves are usually estimated with a large 
number of records and are characterized by rather 
regular patterns (Macciotta et al., 2010). Moreover, 
individual patterns are of interest for the estimation 
of the genetic merit of animals (Macciotta et al., 
2005) via random regression test day models.

This study examined the properties of eleven se-
lected models. The most popular one was first pro-
posed by Wood (1967) to describe the lactation curve 
(WD). Wilmink (1987) proposed a combination of 
an exponential and  linear term. The Wilmink model 
(WIL) can be reduced to a three-parameter model 
by setting the k exponent to a suitable fixed value. 
In 1987, Ali and Schaeffer suggested a polynomial 
regression model (AS) to fit the lactation curve; this 
model is also an important reference that has been 
used in numerous studies (Silvestre et al., 2006). 
Legendre orthogonal polynomials (LEG; Kirkpat-
rick et al., 1990) have been used to model a variety of 
curves, and some authors have reported their advan-
tages in comparison with several parametric models 
(Silvestre et al., 2006; Macciotta et al., 2010; Steri 
et al., 2012). Splines are a type of segmented regres-
sion in which the curve is divided into several sec-
tions, joined at points called knots, each fitted with 
different polynomials; splines have been reported 
to provide extra flexibility in fitting lactation curves 
(White et al., 1999; Macciotta et al., 2010).

In order to use lactation curve functions in  
genetic evaluation, identification of the best fitting 
function is a prerequisite. The purpose of this study 
was to investigate the suitability of eleven mathemat-
ical models for describing the individual lactation 
curves of milk yield and fat and protein contents from 
test-day records of Tunisian Holstein-Friesian cows.

Material and methods

Data were supplied by the National Centre for 
Genetic Improvement (CNAG: Sidi Thabet, Tunis). 
A sample of 260 241 test days of 5649 cows, recorded 
in 188 herds from 1994 to 2002 was used. Lactation 
records with less than 10 consecutive testdays were 
not included. Likewise, test day yields recorded up to 
5 days following calving and very low milk yield (< 3 
kg) were omitted. The lactation period was limited to 
5–305 days in milk (DIM) after calving. Table 1 dis-
plays the structure of the data (average test day milk 
yield (MY), and percentages of fat (FP) and protein 
(PP) in milk composition with parity for first, second, 
third, and greater.

Eleven mathematical models (Table 2) avail-
able in the literature were selected to fit the individ-
ual lactation curves of milk yield. The function of 
time Pi  (Table 2) was calculated using values pub-
lished by Schaeffer (2004). Quadratic splines were 
used in this study with one (QSL1), two (QSL2), 
and three knots (QSL3), the number and locations 
of knots are very important in fitting splines. Actu-
ally, few procedures are available for determining 
them. In this study, knot positions were estimated 
by considering them as additional independent vari-
ables in a non-linear estimation procedure (Macci-
otta et al., 2010) and the position of knots Nj was 
placed at 50, 100, and 200 DIM for cubic splines 
and at 40, 160, and 200 DIM for quadratic splines.  
The WD, WIL, and AS models were fitted by the  

Table 1. Description of data used in this study based on mean and 
standard deviations for milk yield, fat and protein percentage with parity
Traits N Parity Mean Min Max
Milk, kg   82.499   1 18.59 (6.63) 3 63.8

  61.739   2 20.42 (7.67) 3 61.20
116.003 ≥3 20.53 (8.03) 3 59.80

Fat, %   82.499   1   3.40 (0.86) 0.10   9.80
  61.739   2   3.46 (0.90) 0.10   9.80
116.003 ≥3   3.48 (0.89) 0.10   9.50

Protein,%   82.499   1   3.06 (0.41) 0.10   8.40
  61.739   2   3.16 (0.42) 0.10   8
116.003 ≥3   3.12 (0.41) 0.40   8

N – number of test day records, () – standard deviation

Table 2. Lactation curve models applied to fit milk yield, fat and protein 
contents
Model Function Reference
WD Yt = a tb e–ct Wood (1967)
WIL Yt = a + b  e–kt + ct   Wilmink (1987)
LEG3 Yt = a0P0 + a1P1 + a2P2 + a3P3 Kirkpatrick  

et al. (1990)LEG4 Yt  = a0P0 + a1P1 + a2P2 + a3P3 + a4P4 
LEG5 Yt  = a0P0 + a1P1 + a2P2 + a3P3 + a4P4 + a5P5 
LEG6 Yt  = a0P0 + a1P1 + a2P2 + a3P3 + a4P4 + a5P5 + a6P6

CSPL Yt  = a + b1t + b2t 2 + b3t 3 +∑cj (t – N)3 White et al. 
(1999)QSL Yt = a + b1t + b2t 2 +∑cj (t – N)3

AS Yt = a + b X + c X 
2 + f log (1/X) + e (log (1/X))2 Ali and 

Schaeffer 
(1987)

Nj –  position of the knots, X = t/θ (θ – lactation length). For WIL model 
K = 0.65 for milk; yield and k = 0.10 for fat and protein contents.  
AS – Ali and Schaeffer; LEG3 – third-order Legendre polynomials; 
LEG4 – fourth-order Legendre polynomials, LEG5 – fifth-order 
Legendre polynomials, LEG6 – sixth-order Legendre polynomials,  
WD – wood, WIL – Wilmink, CSPL – cubic spline, QSL– quadratic 
spline; Pi

 
– function of time with: 

P0 = 0.70, P1 
= 1.22 β, P2 = –0.79 β + 2.37 β2, P3 = –2.80 β + 4.67 β3,  

P4 = 0.79 β –7.95 β2 + 9.28 β4, P5 
= 4.39 β – 20.52 β3 + 18.46 β5

β – standardized unit of time ranging from –1 to + 1 with β = 2 – 1,  
                          , where: tmin – the earliest day in milk and tmax – the 
                                       latest test day
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Levenberg-Marquardt’s iterative method in a non-
linear regression procedure of SAS (2001); linear 
regression was used to fit Legendre polynomials 
(LEG), cubic spline (CSPL) and quadratic spline 
(QSL). For the WIL model, the parameter k is con-
nected to the time of lactation peak and usually as-
sumes a fixed value derived from a preliminary anal-
ysis made on average production (Wilmink, 1987). 
Goodness of fit was assessed by considering various 
criteria. The adjusted R square (R2

adj) measures how 
successful the fit is in explaining the variation of the 
data. The error in absolute terms (RES) is computed 
from the difference between the predicted and ob-
served yields per test day and refers to the capability 
of a model to estimate the daily yield on a specific 
test day (Guo and Swalve, 1995). The correlation 
between the measured and estimated test day yield 
(R) enumerates the degree of association between 
observed and estimated values (Guo and Swalve, 
1995). The root means square error (RMSE) is  
a frequently used measure of the difference between 
values predicted by a model and the values actually 
observed. The standard error of the individual pre-
dicted values (STDIN) specifies a variable that con-
tains the standard error of the individual predicted 
yield. The quotient (Q) between the sum of square 
errors and the observed sum of squares highlights 
the similarity between the measured lactation curve 
and the estimated lactation curve (Ali and Schaeffer, 
1987). The analysis of residuals is a common tech-
nique in the evaluation and comparison of models, 
in which a residual for a given record of daily yield 
is the difference between the observed value and the 
value predicted by the regression equation (Silves-
tre et al., 2006); the residual distributions were ob-
tained for each model and plotted against days in 
milk using the SAS GPLOT procedure (SAS, 2001).

Results
Table 3 shows the percentage of individual lacta-

tion curves within each class of adjusted R-squared 
(C1 to C5) obtained by fitting the different models for 
all milk traits. All models fit better MY and PP than 
FP and a difference in the proportion of individual 
curves was observed between models and traits. The 
three-parameter models (WIL and WD) and the fourth 
parameter model (LEG3) presented the lowest percent 
of curves having an R2

adj > 0.80 for MY, FP, and PP. In 
particular, the  fir of the LEG3 model was very poor 
for FP and had only about 8% of individual curves 
with an R2

adj higher than 0.80. The fits of models 
characterized by a high number of parameters show 
the greatest proportion of individual lactations with  

R2
adj > 0.80. An increase in the number of curves show-

ing an R2
adj > 0.80 was observed with the Legendre 

orthogonal polynomial and quadratic spline models as 
the order or the number of knots increased. For exam-
ple, the percentage of C5 class increased from about 
29% (LEG3) to 47% (LEG6) and an increase of 10% 
was observed for QSL between one and three knots.

Table 4 shows selection criteria for the various 
models fitted to individual lactation curves for MY, 
FP, and PP. For the comparison criterion RMSE, AS 
ranked as the best model to fit MY by obtaining the 
smallest values, followed by the QSL3, CSPL, and 
LEG6 models. In contrast to this, the three-parameter 
models gave a higher magnitude of the error illustrat-
ed by large values of RMSE (2.80–2.89). All models 
predicted the average milk yield with RESmargin of 
< 2 kg. The AS model predicted yield with an abso-
lute error higher than LEG6 and QSL3. In addition, 
the QSL3 presented the lowest values of STDIN. For 
FP and PP results, AS and LEG5 produced similar 
values of RMSE and STDIN, but LEG5 was supe-
rior in terms of the difference between observed and 
predicted values (RES). However, on the basis of this 
criterion, QSL3 and LEG6 showed better fitting per-
formances for FP and PP. Moreover, the WD model 
was very poor, especially for PP. The Q parameter 
showed a significant difference between models for 
all milk traits and the lowest value was obtained with 
LEG6, followed by QSL3. The correlation between 
observed and estimated yield (R) ranged from 0.94 to 
0.97, 0.75 to 0.92, and 0.80 to 0.94 for MY, FP, and 
PP, respectively. The correlation values (R) for milk 
yield were high for all models (R > 0.94). Similar 
results were obtained by Otwinowska-Mindur et al. 
(2013) for Polish Holstein-Friesian cows. Estimated 
yields (expressed as a percentage for fat and protein) 
were better correlated for MY and PP than for FP. For 
MY the AS, LEG6, and QSL3 models showed bet-
ter performance than the other models that quantified  
a higher degree of association between observed and 
estimated yield. In this direction, the AS model was 
less correlated, especially for FP (R = 0.87) and gave  
a moderate correlation (R = 0.90) for PP.

Average residual distributions were obtained 
for each model and plotted against days in milk in 
the range from 5 to 305 DIM, to determine the pat-
tern of bias in predicting milk yields or contents. 
Selected residual distributions are presented in  
Figure 1 as an example of models giving the worst 
fit (example chosen for the WD model) and for 
QSL3 and LEG6, chosen among models giving 
the best performance by considering statistical cri-
terion results. For MY, the distribution of residual 
for model WD (Figure 1A) fluctuated throughout the 
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Table 3. Relative frequencies of fit for individual curves for milk yield, fat and protein percentage among five classes of adjusted R2

R2
adj

class
Lactation curve models
AS1 LEG32 LEG43 LEG54 LEG65 WD6 WIL7 CSPL8 QSL1 QSL2 QSL3

Milk yield
C1 14.84 16.24 14.12 12.96 13.99 18.86 17.79 12.10 13.68 12.12 12.96
C2   7.85 11.51   9.44   7.92   6.87 12.40 11.57   7.92   9.23   7.80   6.87
C3 12.74 16.88 15.42 13.44 11.23 17.82 17.15 13.27 14.80 13.21 11.72
C4 22.81 26.57 25.77 24.08 20.97 25.60 25.68 24.05 25.88 23.92 21.33
C5 41.76 28.80 35.25 41.60 46.94 25.32 27.81 42.66 36.41 42.95 47.12

Fat content, %
C1 15.51 30.26 23.56 18.12 13.84 30.48 29.65 18.39 23.38 18.32 14.19
C2 17.29 25.93 23.44 19.97 16.75 26.18 24.89 19.87 23.80 19.99 16.64
C3 17.92 20.70 21.74 21.14 18.67 19.94 19.26 21.10 21.34 21.29 18.64
C4 17.94 14.85 18.39 20.29 21.37 14.13 14.69 20.83 18.59 20.54 21.27
C5 31.34   8.26 12.87 20.48 29.37   9.27 11.51 19.81 12.89 19.86 29.26

Protein content, %
C1 10.92 22.56 17.21 13.14 10.38 24.18 23.50 12.95 17.58 13.22 10.78
C2 13.53 23.27 19.20 16.51 13.21 23.42 21.91 16.15 19.45 16.24 13.06
C3 16.56 21.68 21.55 19.33 17.16 20.41 20.25 19.82 21.55 19.80 16.53
C4 19.70 19.14 21.71 23.19 22.38 17.90 17.75 23.59 21.61 23.43 22.66
C5 39.29 13.35 20.33 27.83 36.87 14.09 16.59 27.49 19.81 27.31 36.95

C1: R2
adj < 0.20; C2: 0.20 ≤ R2

adj < 0.40; C3: 0.40 ≤ R2
adj < 0.60; C4: 0.60 ≤ R2

adj < 0.80; C5: R2
adj ≥ 0.80; 1– 8 see Table 2;  QSL1 – quadratic spline with 

one knot, QSL2 –  quadratic spline with two knots, QSL3 –  quadratic spline with three knots

Table 4. Selection criteria for comparison of lactation models fitted with test-day records for milk yield, fat and protein content
Goodness 
of fit

Lactation curve models
AS1 LEG32 LEG43 LEG54 LEG65 WD6 WIL7 CSPL8 QSL19 QSL210 QSL311

Milk yield
RMSE   2.49

(1.34)
  2.89
(1.33)

  2.75
(1.33)

  2.66
(1.38)

  2.63
(1.45)

  2.80
(1.30)

  2.83
(1.31)

  2.61
(1.34)

  2.71
(1.31)

  2.62
(1.34)

2.60
(1.44)

RES   1.26
(1.35)

  1.88
(1.71)

  1.59
(1.52)

  1.31
(1.35)

  1.03
(1.18)

  1.83
(1.70)

  1.80
(1.76)

  1.26
(1.38)

  1.52
(1.57)

  1.26
(1.38)

1.02
(1.21)

STDIN   3.10
(1.71)

  3.29
(1.56)

  3.22
(1.65)

  3.15
(1.77)

  3.07
(1.95)

  3.35
(26.69)

  3.26
(1.55)

  3.08
(1.72)

  3.15
(1.62)

  3.08
(1.72)

3.06
(1.93)

Q   1.65   3.13   2.22   1.57   0.94   3.55   3.52   1.71   2.48   1.71 1.12
R   0.97   0.94   0.95   0.95   0.97   0.94   0.94   0.96   0.95   0.96 0.97

Fat content
RMSE   0.63

(0.35)
  0.68
(0.32)

  0.66
(0.34)

  0.63
(0.36)

  0.60
(0.39)

  0.67
(0.31)

  0.67
(0.32)

  0.64
(0.37)

  0.66
(0.34)

  0.64
(0.37)

  0.61
(0.39)

RES   0.30
(0.32)

  0.42
(0.38)

  0.35
(0.35)

  0.28
(0.31)

  0.21
(0.27)

  0.42
(0.39)

  0.41
(0.41)

  0.28
(0.33)

  0.34
(0.37)

  0.28
(0.33)

  0.21
(0.28)

STDIN   0.80
(0.46)

  0.79
(0.38)

  0.80
(0.41)

  0.80
(0.46)

  0.79
(0.51)

  0.79
(0.38)

  0.79
(0.39)

  0.80
(0.46)

  0.80
(0.42)

  0.80
(0.46)

  0.79
(0.51)

Q   3.22   7.08   5.01   3.34   1.97   7.15   7.06   3.39   5.40   3.38   2.18
R   0.87   0.76   0.82   0.82   0.92   0.75   0.75   0.87   0.81   0.87   0.91

Protein content
RMSE   0.26

(0.16)
  0.28
(0.15)

  0.27
(0.16)

  0.26
(0.16)

  0.24
(0.17)

  0.67
(0.31)

  0.28
(0.14)

  0.26
(0.16)

  0.27
(0.15)

  0.26
(0.16)

  0.25
(0.18)

RES   0.12
(0.14)

  0.17
(0.17)

  0.14
(0.15)

  0.11
(0.13)

  0.08
(0.11)

  0.42
(0.39)

  0.17
(0.18)

  0.11
(0.14)

  0.14
(0.16)

  0.11
(0.14)

  0.08
(0.12)

STDIN   0.33
(0.21)

  0.34
(0.17)

  0.33
(0.19)

  0.33
(0.21)

  0.32
(0.23)

  0.79
(0.38)

  0.34
(0.18)

  0.33
(0.21)

  0.33
(0.19)

  0.33
(0.21)

  0.32
(0.23)

Q   0.68   1.88   1.16   0.48   0.23   1.86   1.63   0.74   1.50   0.86   0.42
R   0.90   0.80   0.85   0.85   0.94   0.80   0.80   0.89   0.85   0.89   0.93

1– 11 see Tables 2 and 3;  RMSE –  the root means square error, RES –  the error in absolute term (defined as the absolute values of the difference 
between the predicted and observed test-day yields), STDIN –  the standard error of the individual predicted values, Q –  the quotient between 
the sum of square errors and the observed sum of squares, R –  the correlation between the real and estimated values
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lactation between positive and negative values, it was 
negative at the beginning of lactation and from about 
270 DIM until the end of lactation. A high positive 
residual variance was observed between 30 and 70 
DIM and also from 160 to 260 DIM. The residual 
pattern obtained for the WD model for MY is  re-
lated to that reported by Olori et al. (1999). For FP 
and PP, a positive residual was observed during the 
initial phase; then residuals were distributed between 
negative and positive values on the horizontal axis 
throughout the rest of lactation, with a higher and 
more fluctuating magnitude for FP than for PP (Fig-
ure 1B and 1C). Residuals plots for other models 
were not included in this paper, but a similar pattern 
was observed with LEG3 and LEG4 and comparable 
results were obtained with the LEG5, WD, and WIL 
models for all milk traits, but a small difference was 
detected for the WIL model, with an accurate estima-
tion of only the initial milk constituent (FP and PP).  
 

Average values of residual along the lactation for 
QSL3 model tended to remain close to zero with  
a lower magnitude for MY and FP, and were very 
close to the horizontal axis, especially for PP and MY. 
Lactation curves were fitted adequately by QSL3, par-
ticularly in the first lactation stage and around peak 
(from DIM 5 to 50 DIM). QSL3 was slightly better 
in the second part of the lactation trajectory, but es-
timation improved at the end from about 280 DIM 
for all traits. Similar trends in the residual distribu-
tion were obtained with the CSPL and AS models for 
all milk traits. Although the performance of LEG6 
was among the best according to the statistical cri-
teria results, the patterns found in Figure 1A for MY  
suggest that the distribution of the errors for LEG6 
was not random during lactation and was only close 
to zero at the end of lactation. While for FP and PP  
a similar pattern was observed for models QSL3 and 
LEG6.

Figure 1A. Distribution of milk average error (residuals) for WD, QSL3 
and LEG6 models for milk yield

Figure 1B. Distribution of milk average error (residuals) for WD, QSL3 
and LEG6 models for fat content
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Discussion
The coefficient of determination adjusted by 

the number of parameters (R2
adj) is equal to the per-

centage of the variance of daily yield explained by 
the model. Not all models had the same efficiency 
in the fitting of the MY and its compositions, the 
difference in proportions between the number of 
curves with R2

adj > 0.80 was the highest between 
MY and FP and ranged from 10.42 points (AS) to 
23.52 points (QSL3), similar results were noted by 
Silvestre et al. (2009). Poor fitting performance of 
individual lactation curves for FP was indicated by 
Quinn et al., 2006; Silvestre et al., 2009; Steri el al., 
2012. In addition, the large relative frequencies of 
MY curves showing an R2

adj > 0.80 are in agreement 
with previous results reported in dairy cattle (Mac-
ciotta et al., 2005; Silvestre et al., 2009; Macciotta  
et al., 2010; Steri et al., 2012). The R2

adj classification 

revealed that models with a higher number of pa-
rameters (AS, LEG5 and LEG6) and spline models 
(CSPL, QSL2 and QSL3) showed better fitting per-
formances for MY. However, AS and LEG5 models 
had very similar performances for MY, in agreement 
with Steri et al. (2012). The relative frequencies of 
R2

adj more than 0.80 for MY were the highest for 
LEG6 and QSL3. Macciotta et al. (2010) reported 
an increase in the number of curves showing an  
R2

adj > 0.80 with the quadratic and cubic splines in 
comparison with AS and fourth-order Legendre or-
thogonal polynomials for MY. For FP and PP, the 
AS, LEG6, and QSL3 models gave the best fit to in-
dividual lactation curves. Moreover, the LEG6 and 
QSL3 models presented the same relative frequen-
cies of R2

adj more than 0.80. Steri et al. (2012) illus-
trated that QSL3 and CSPL showed the best fit for 
all milk traits, based on the percentage of individual 
curves having an R2

adj greater than 0.70. 
Generally, for all milk traits the goodness of fit 

increased with the number of function parameters 
describing the curve, in agreement with earlier sug-
gestions (Kirkpatrick et al., 1990; Meyer, 2005). 
The high-order orthogonal Legendre polynomial 
(LEG6) and the quadratic spline with three knots 
(QSL3) presented similar performance with respect 
to the RES, STDIN and R parameters for MY. LEG6, 
recording the lowest Q parameter, indicated a closer 
similarity between the observed and estimated val-
ues. For FP and PP, LEG6 and QSL3 presented ex-
actly the same values of RES and STDIN and al-
most similar values of the RMSE and R parameters, 
and presented the same result as MY with respect 
to the Q parameter. For MY, a general reduction of 
performance of fit was found with LEG6 in relation 
to the residual distribution for MY, because the pre-
diction was underestimated at the beginning of lac-
tation and overestimated around the peak yield. Pool 
et al. (2000) noted  similar results in which variance 
predictions at the extremes of the lactation trajec-
tory were still overestimated, and residuals showed  
a systematic pattern over the lactation period when 
the genetic and permanent environmental compo-
nents were both modelled by a polynomial regres-
sion. The QSL3 and the AS models showed a random 
distribution of residuals for all milk traits. However,  
Druet et al. (2003) noted that the Legendre polynomi-
als had an increased bias at the beginning and the end 
of lactation and showed waves in the middle of the 
lactation. The statistical parameter results obtained in 
this study for individual lactations indicated that the 
best performance obtained by a spline model with 
three knots is close to that of a high-order polynomi-
al function. This may be explained by the suitability 

Figure 1C. Distribution of milk average error (residuals) for WD, QSL3 
and LEG6 models for protein content
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of spline models. However, splines play a role simi-
lar to higher order polynomials and spline curves are 
constructed from pieces of low-degree polynomials, 
joined at knots.

Non-parametric models (QSL3 and CSPL) 
showed better fitting performance compared with 
parametric models (WD and WIL), particularly in 
the first part of lactation and around the peak, WD 
compared with QSL3 (Figure 1), which is in agree-
ment with some reports (Silvestre et al., 2006; Mac-
ciotta et al., 2010; Steri et al., 2012). This problem 
was also observed with polynomial models only for 
MY (Figure 1A) but with a lower magnitude. The 
difficulty for the parametric function to adequately 
model the peak yield can be explained by the high de-
gree of correlation between its parameters. This is not 
the case for a Legendre polynomial function because 
of the orthogonality propriety of polynomials (Steri  
et al., 2012). The former models (parametric models) 
were unable to properly model the peak of the lacta-
tion curve. Poor fits noted for this part reached around 
70 DIM (around peak yield) and were reported in 
several studies using parametric models (Olori et al., 
1999; Silvestre et al., 2006; Macciotta et al., 2011). 
We clearly observed  this disadvantage in this work 
with the WD, WIL, and orthogonal polynomials.

Variation in individual fit of the various mod-
els was observed among animals and among mod-
els. The variation in fit among animals, illustrated 
mainly by the Q values (Silvestre et al., 2006), sug-
gests that the suitability of the considered model 
depends on the mathematical form of the model 
and on individual trends in TD milk yield and its 
composition, which vary between animal and lacta-
tion (as an indication QWD = 7.25; QLEG6 = 1.97 and  
QWD = 1.68; QLEG6 = 0.23 respectively for fat and pro-
tein contents). These results are similar to previous 
findings by Silvestre et al. (2006). In addition, Olori 
et al. (1999) used weekly averages of daily milk yield 
of 488 first-lactation cows recorded in a single herd to 
investigate the fit of five models and concluded that 
there was  little difference between the models in fitted 
average herd lactation and that the variation in fit was 
almost entirely between cows. Guo and Swalve (1995) 
evaluated the goodness of fit of 16 lactation curve 
models for milk yield using data collected from three 
farms and reported that differences between cows is of 
great importance. For fat and protein contents, Quinn 
et al. (2006) concluded that the investigated models 
were similar in term of goodness of fit using the whole  
data set.

The results of the present study showed that 
the most adequate functions for modelling the 
individual lactation curves for all milk traits in  
the Tunisian population of Holstein-Friesians were  

LEG 6, AS, QSL3, and CSPL, with an advantage for 
the quadratic spline with three knots. The advantage of 
the spline can be explained by its flexibility. However, 
regression splines offer the possibility of using  
a number and placement of knots along the lactation 
trajectory (White et al., 1999; Meyer, 2005). In 
addition, regression splines have advantages for 
modelling lactation curves, such as limited number 
of required parameters, good flexibility, smoothness 
and limited sensitivity to data (Druet et al., 2003).

Conclusions
The present study used test day data to fit in-

dividual lactation curves. Eleven mathematical 
models were compared for accuracy of modelling 
lactation curves for milk yield and contents. The re-
sults indicate that higher-order Legendre orthogonal 
polynomials (LEG6), cubic and quadratic splines 
with three knots are more flexible and suitable to 
fit individual lactation curves for milk yield and its 
composition in the Tunisian population of Holstein-
Friesians, although the goodness of fit shows a cer-
tain superiority of the quadratic splines with 3 knots 
(QSL3) model. The Ali and Schaeffer model also pre-
sents a respectable suitability, especially compared 
with parametric models and low-order polynomial  
models.
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